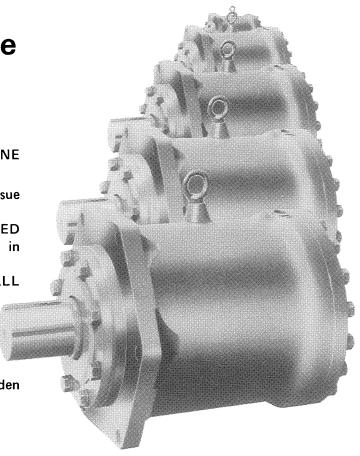

F1N Hydraulics

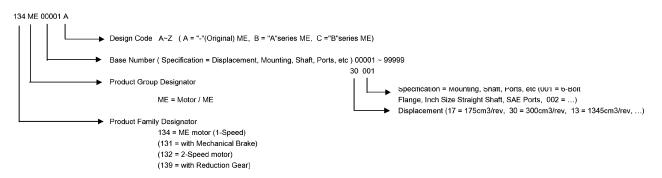
ME Series Hydraulic Motors



Eaton® ME Series Low Speed High Torque Hydraulic Motor

ADVANTAGES

"PROVEN IN INDUSTRIAL, MOBILE AND MARINE APPLICATIONS"

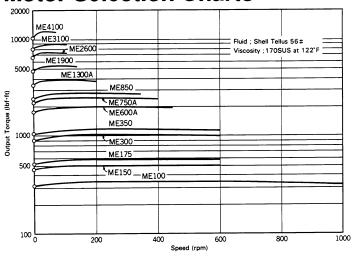

- HIGH PRESSURE Continuous Operating Pressue 3600 psi
- SMOOTH OPERATION AT VERY LOW SPEED Multiple pistons and double swash plate result in smooth operation at speeds down to 1 rev/min
- HIGH STARTING TORQUE AND HIGH OVERALL EFFICIENCY
- COMPACT AND EASY TO INSTALL
- FULLY REVERSIBLE
- RUGGED CONSTRUCTION
- QUIET OPERATION
- UNAFFECTED BY THERMAL SHOCK (sudden changes in operating fluid temperature)

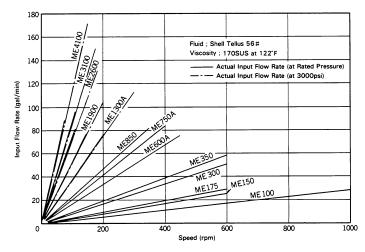
New Performance Data

Model	Displace- ment	Rated Pressure	Peak Pressure	Rated Torque	Rated Speed	Max Speed	Max Horse Power	Weight
	in ³ /rev.	psi	psi	lbf-ft	rpm	rpm	hp	lbs
ME100	6.04	4000	4700	320	1000	1000	61	49
ME150	9.27	4000	4700	492	600	800	56	92
ME175	10.68	4000	4700	566	600	800	65	92
ME300	18.55	4000	4700	984	600	800	112	117
ME350	21.36	4000	4700	1133	600	800	129	117
ME600A	36.74	4000	4700	1948	450	600	167	203
ME750A	45.76	4000	4700	2426	400	520	185	265
ME850	51.68	4000	4700	2740	350	450	183	265
ME1300A	82.06	3600	4700	3916	200	390	186	375
ME1900	113.97	3600	4700	5438	140	260	173	595
ME2600	157.29	3600	4700	7505	110	230	214	772
ME3100	189.42	3600	4700	9039	110	230	251	802
ME4100	249.97	3600	4700	11928	75	200	284	1147

^{*} Speed in () is a value at 3000 psi.

Example 134ME10001A = ME100-KE (ME motor, 99cm3/rev, Inch size Straight shaft, SAE Ports, Original design)
134ME13006B = ME1300AP (ME motor, 1345cm3/rev, Metric Spline shaft, Metric Ports, A series)
134ME35002C = ME350BHE (ME motor, 350cm3/rev, Inch size Spline shaft, SAE Ports, Third design = B series)

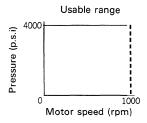

Standard Motor

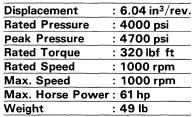

Model				(ME100)	(ME150)	(ME175)	(ME300B)	(ME350B)	(ME600B)
				Displacement	cm3/r [in3/r]	and Product	Number		
				99	152	175	300	350	600
Mounting	Shaft	Ports		[6.0]	[9.3]	[10.7]	[18.3]	[21.4]	[36.6]
	Inch Size	SAE ((E)	134ME10001	134ME15001	134ME17001	134ME30001	134ME35001	134ME60001
	Straight (K)	Metric							
6 Bolt									
Flange	Inch Size	SAE ((E)	134ME10002	134ME15002	134ME17002	134ME30002	134ME35002	134ME60002
	Spline (H)	Metric							
(99cm3/r	Metric	SAE ((E)	134ME10003	134ME15003	134ME17003	134ME30003	134ME35003	134ME60003
=4 Bolt)	1/10 Taper	Metric		134ME10021	124ME15001	134ME17021	124ME20021	134ME35021	124ME60021
(750, 848cm3/r	(B)	IVIEUIC		134WE 10021	134WE 15021	134WE17021	134WE30021	134WE35021	134WE00021
=5 Bolt)	Metric	SAE ((E)						
	Straight								
	(C)	Metric		134ME10022	134ME15022	134ME17022	134ME30022	134ME35022	134ME60022
	Metric	SAE ((E)						
	Spline (P)	Metric		134MF10023	134ME15023	134MF17023	134ME30023	134ME35023	134ME60023

Standard Motor

Model				(ME750B)	(ME850B)	(ME1300A)	(ME1900)	(ME2600)	(ME3100)	(ME4100)
				750	848	1345	1868	2578	3104	4097
Mounting	Shaft	Ports		[45.8]	[51.8]	[82.1]	[114.0]	[157.3]	[189.4]	[250.0]
	Inch Size	SAE	(E)	134ME75001	134ME85001	134ME13001	134ME19001	134ME26001	134ME31001	134ME41001
	Straight (K)	Metric								
6 Bolt	,									
Flange	Inch Size	SAE	(E)	134ME75002	134ME85002	134ME13002	134ME19002	134ME26002	134ME31002	134ME41002
	Spline									
	(H)	Metric								
(99cm3/r	Metric	SAE	(E)	134ME75003	134ME85003	134ME13003	134ME19003	134ME26003	134ME31003	134ME41003
=4 Bolt)	1/10 Taper									
	(B)	Metric		134ME75021	134ME85021	134ME13021	134ME19021	134ME26021	134ME31021	134ME41021
(750, 848cm3/r =5 Bolt)	Metric	SAE	(E)							
-5 Boil)	Straight	OAL	(L)							
	(C)	Metric		134ME75022	134ME85022	134ME13022	134ME19022	134ME26022	134ME31022	134ME41022
	Metric	SAE	(E)							
	Spline									
	(P)	Metric		134ME75023	134ME85023	134ME13023	134ME19023	134ME26023	134ME31023	134ME41023

Motor Selection Charts

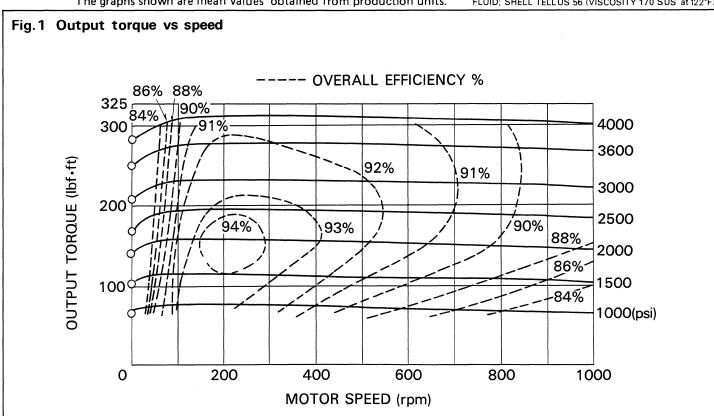

Brake Motors

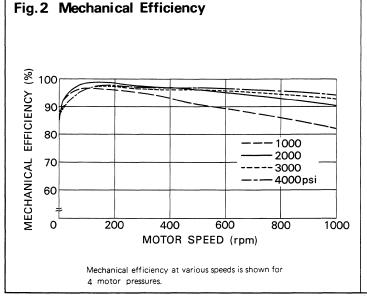

Model	Product Number	Displacement (in3/rev)	Brake Torque (lbf-ft)	Brake Release Pressure (psi)	Weight (lbf)
ME100-FS-BL70F	131-1001-001	6.04	506	171	185
ME175-FS-BL70F	131-1002-001	10.68	506	171	185
ME300-FS-BA121F	131-1003-001	18.55	875	171	209
ME350-FS-BA121F	131-1004-001	21.36	875	171	209
ME600ANS-BB250F	131-1005-001	36.74	1808	171	410
ME750ANS-BC300F	131-1006-001	45.76	2169	171	478
ME850-NS-BC300F	131-1007-001	51.68	2169	171	478

Geared Motors

Model	Product Number	Motor Displacement (in3/rev)	Gear Ratio	Rated Torque at 3000 psi (lbf-ft)	Max. Torque at 3600 psi (lbf-ft)	Rated Speed (rpm)	Allowable Radial Load (Ibf)	Weight
ME175-GTE- SPHLF-66S	139-1001-001	10.68	5.053	2,032	2,416	20	14,323	289
ME300-GTE- SPHLF-72S	139-1002-001	18.55	5.053	3,530	4,202	20	18,963	392
ME350-GTE- SPHLF-72D	139-1003-001	21.36	5.053	4,060	4,830	20	23,373	430
ME600AGTE- SPHLF-84D	139-1004-001	36.73	5.053	6,990	8,320	20	29,327	650
ME750AGTE- SPHLF-90D	139-1005-001	45.76	5.053	8,700	10,360	20	35,501	838
ME850-GTE- SPHLF-90D	139-1006-001	51.68	5.053	9,830	11,700	20	35,501	838
M1300-GTE- SPHLE-108D	139-1007-001	82.06	5.053	15,600	18,570	20	52,700	1,290
M1900-GTF- SPHLE-120D	139-1008-001	113.97	5.053	21,670	25,800	20	60,417	1,841
M2600-GTF- SPHLE-132D	139-1009-001	157.29	5.053	29,930	35,620	20	73,427	1,426

Eaton® ME100





The graphs shown are mean values obtained from production units.

FLUID; SHELL TELLUS 56 (VISCOSITY 170 SUS at 122°F)

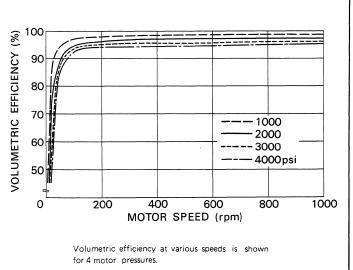
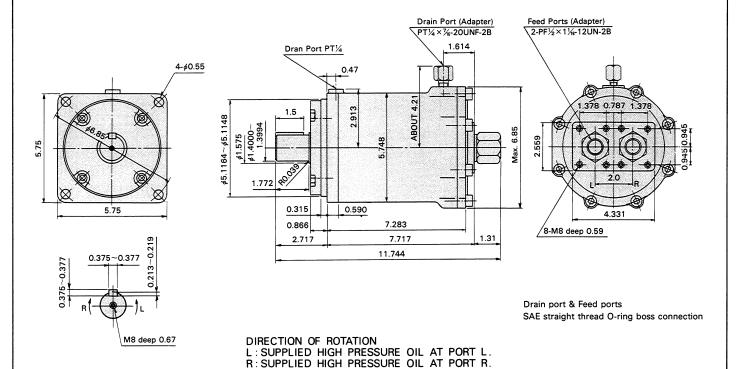
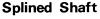
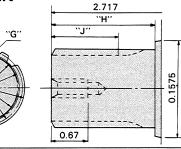
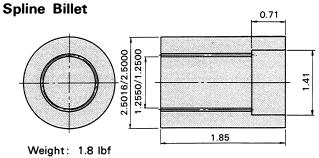




Fig. 3 Volumetric Efficiency


Nominal Dimensions

Optional Shaft Dimensions


M8

From flange mount surface

Type of Spline:Involute:Flat root side fit:Pressure angle 30°:Pitch 16/32 Class 1 fit:To B.S.3550 or A.S.A.—B5—15.

No.of teeth	Pitch Dia. "A"	Base Dia. "B"	Tooth Thickness "C"	"D"	Form Dia. "E"	Minor Dia. "F"	Fillet Radius "G"	"H"	"J"
21	1.3125	1.1367	0.0951 0.0939	1.3535 1.3585	1.2460	1.2225 1.2335	0.011	1.772	1.102

Involute Spline (Flat root side fit, Class 1 fit) B.S.3550 or A.S.A-B5-15

Allowable Pressure for Spline Billet: 4000 psi

No.of Teeth:

21

Pitch:

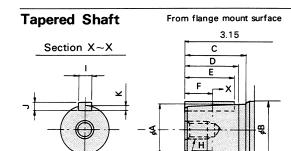
16/32

Pressure Angle: 30°

Pitch Dia:

1.3125

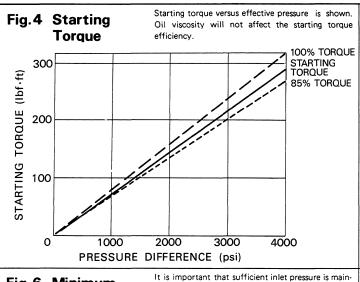
Major Dia:

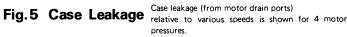

1.3860/1.3750

Minor Dia:

1.2550/1.2500

Space Width:


0.1010/0.0998



Α	В	С	D	E	F	G	Н	ı	J	К
1.3780 1.3773	0.1575	1.772	1.57	1.50	0.79	0.98	M12	0.3937 0.3923	0.3150 0.3114	0.2047 0.1969

Taper: 1.0/10 10

Shaft (seal land area) is chrome plated.

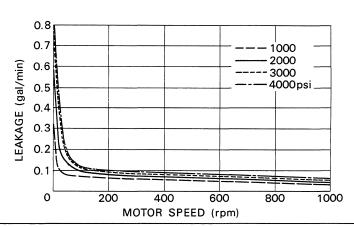


Fig. 6 Minimum Boost Pressure

tained when the motor is operated as a pump or when the load overruns the motor, to prevent cavitation.

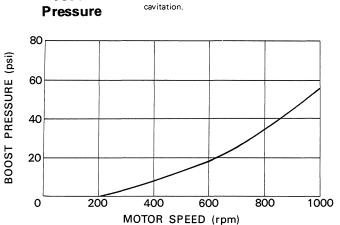
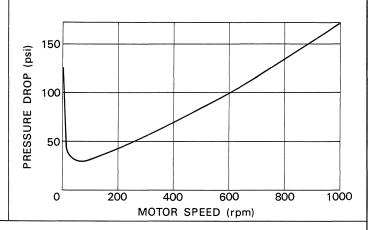
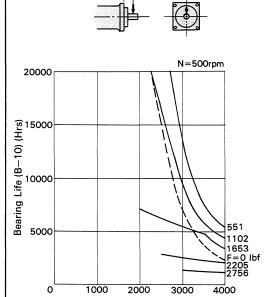
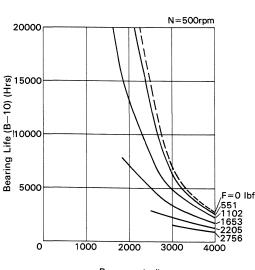


Fig. 7 Pressure Drop

Pressure necessary to run motor without load is shown for various speeds.


Fig. 8 Bearing Life and Motor Shaft Radial Load

Pressure (psi)

Fig. 8-1

1.83in

Pressure (psi)

Fig. 8-2

Note

- If motors are operated on the proper conditions, the operational life is determined by the Bearing Life.
- In order to maintain the maximum bearing life, when a radial load is imposed on the output shaft the motor should be installed as illustrated in Fig. 8;

For a uni-directional application, motor should be installed so that side load acts as shown in figure 8.1.

For a bi-directional application, involving a radial load for each rotation, then the motor should be installed so that side loads act as shown in figure 8.2.

The graphs shown are the bearing life (B-10 Life) at 500 rpm shaft speed for various pressures and radial loads.

When the shaft speed differs from 500 rpm, the bearing life can be obtained by the formula below:

B-10 Life = (Bearing Life obtainable in the graph at 500 rpm)

× 500 Actual Shaft Speed

In case where the side load acts at a different position to the mid point of the shaft projection please refer to us.

4. Maximum allowable radial load (load applied at the mid-point of shaft projection)

Working Pressure (psi)	2000	3000	4000
Max. Allowable Radial Load (lbf)	3200	3200	3200

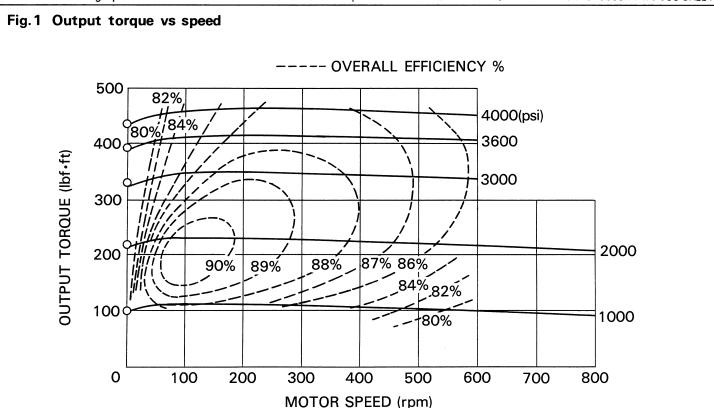
5. Applications with axial thrust loads should be referred to us.

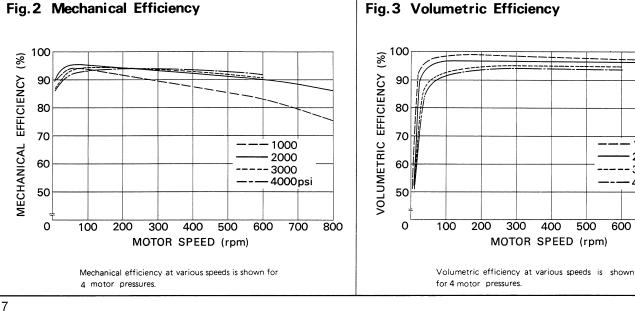
Eaton® ME150 Usable range : 9.27 in³/rev. Displacement 4000 : 4000 psi Rated Pressure Pressure (p.s.i) Peak Pressure : 4700 psi Rated Torque 492 lbf·ft 2000 600 rpm Rated Speed Max. Speed : 800 rpm Max. Horse Power: 56 hp 600 800 Weight Motor speed (rpm)

The graphs shown are mean values obtained from production units.

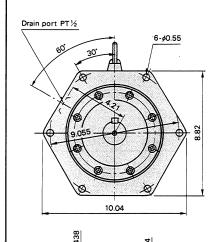
FLUID; SHELL TELLUS 56 (VISCOSITY 170 SUS at 122°F)

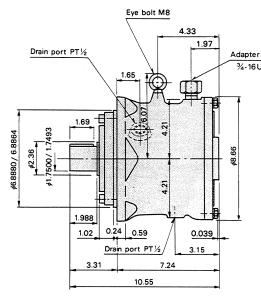
1000

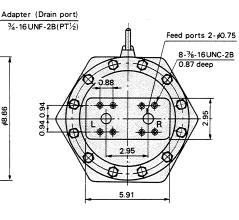

2000


3000

4000psi


700

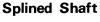

800

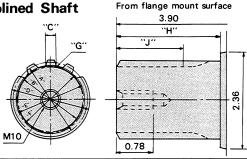


Nominal Dimensions

Feed ports SAE 4bolts split flange

Drain port

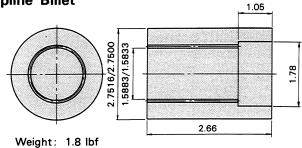

SAE straight thread O-ring boss connection


DIRECTION OF ROTATION

L: SUPPLIED HIGH PRESSURE OIL AT PORT L. R: SUPPLIED HIGH PRESSURE OIL AT PORT R.

Optional Shaft Dimensions

M10 0.78deep



Type of Spline:Involute:Flat root side fit:Pressure angle 30° :Pitch 12/24Class 1 fit:To B.S.3550 or A.S.A.-B5-15.

No.of teeth	Pitch Dia. "A"	Base Dia. "B"	Tooth Thickness "C"	Major Dia. "D"	Form Dia. "E"	Minor Dia. "F"	Fillet Radius "G"	"H"	"J"
20	1.6667	1.4434	0.1294 0.1263	1.7293 1.7243	1.5793	1.5627 1.5497	0.014	2.58	1.57

Spline Billet

From flange mount surface

Involute Spline (Flat root side fit, Class 1 fit) B.S.3550 or A.S.A-B5-15

Allowable Pressure for Spline Billet: 4000 psi

No.of Teeth:

20

Pitch: Pressure Angle: 30°

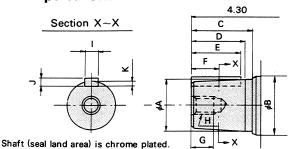
12/24

Pitch Dia:

1.6667

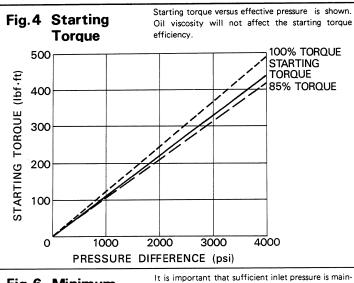
Major Dia:

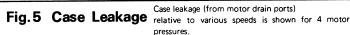
1.7630/1.7500

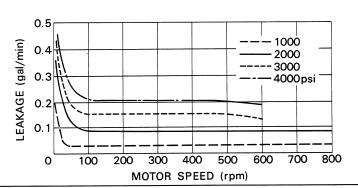

Minor Dia:

1.5883/1.5833

Space Width:


0.1339/0.1326


Tapered Shaft



Α	В	С	D	Е	F	G	н	I	J	к
1.7717 1.7710	2.36	2.32	2.13	1.97	1.06	0.98	M16	0.5512 0.5495	0.3543 0.3508	0.2244 0.2165

Taper: 1.0/10

Fig. 6 Minimum Boost Pressure

It is important that sufficient linet pressure is maintained when the motor is operated as a pump or when the load overruns the motor, to prevent cavitation.

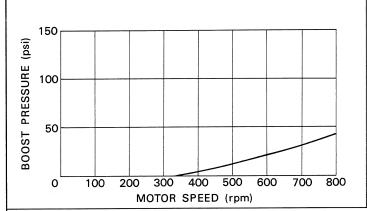


Fig. 7 Pressure Pressure necessary to run motor without load is shown for various speeds.

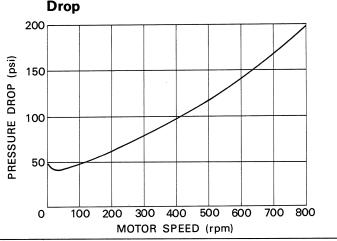
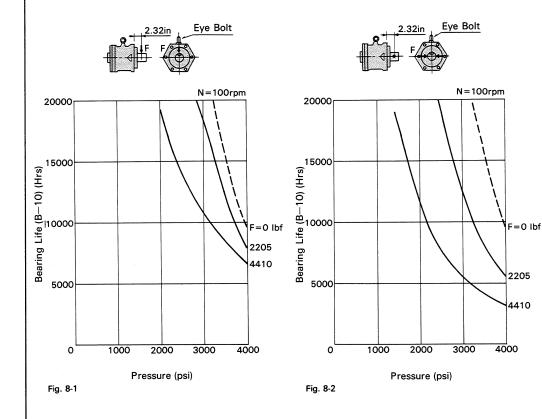



Fig. 8 Bearing Life and Motor Shaft Radial Load

Note

- If motors are operated on the proper conditions, the operational life is determined by the Bearing Life.
- In order to maintain the maximum bearing life, when a radial load is imposed on the output shaft the motor should be installed as illustrated in Fig. 8;

For a uni-directional application, motor should be installed so that side load acts as shown in figure 8.1.

For a bi-directional application, involving a radial load for each rotation, then the motor should be installed so that side loads act as shown in figure 8.2.

The graphs shown are the bearing life (B-10 Life) at 100 rpm shaft speed for various pressures and radial loads.

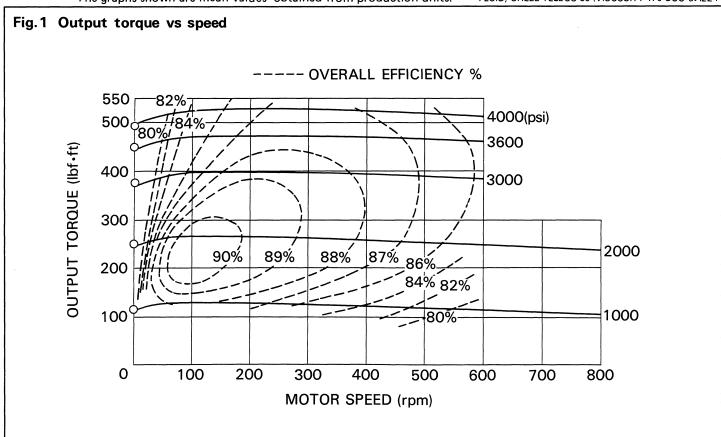
When the shaft speed differs from 100 rpm, the bearing life can be obtained by the formula

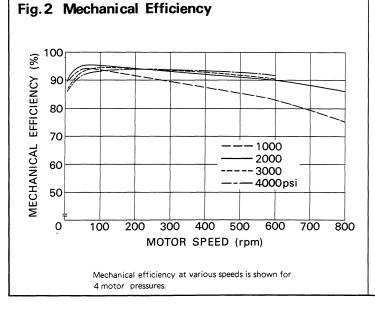
B-10 Life = (Bearing Life obtainable in the graph at 100 rpm)

× 100 Actual Shaft Speed

In case where the side load acts at a different position to the mid point of the shaft projection please refer to us.

 Maximum allowable radial load (load applied at the mid-point of shaft projection)

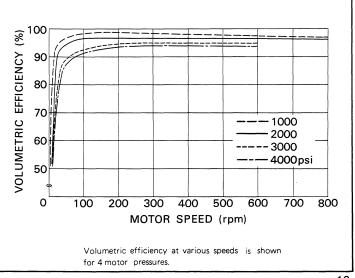
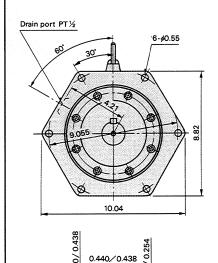
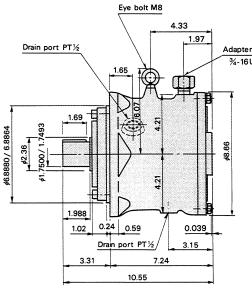

Working Pressure (psi)	2000	3000	4000
Max. Allowable Radial Load (lbf)	6300	6100	6000

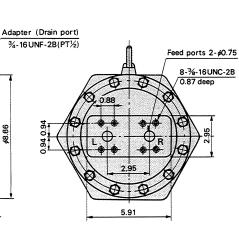

5. Applications with axial thrust loads should be referred to us.

Eaton[®] ME175 Usable range : 10.68 in³/rev. Displacement 4000 Rated Pressure : 4000 psi Pressure (p.s.i) Peak Pressure : 4700 psi : 566 lbf·ft Rated Torque 2000 Rated Speed : 600 rpm Max. Speed : 800 rpm Max. Horse Power: 65 hp 600 800 Weight : 92 lb Motor speed (rpm)

The graphs shown are mean values obtained from production units.

FLUID; SHELL TELLUS 56 (VISCOSITY 170 SUS at 122°F)

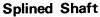

Fig. 3 Volumetric Efficiency

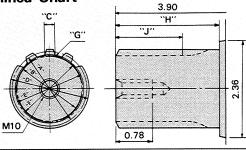
ME175

Nominal Dimensions

Feed ports SAE 4bolts split flange

Drain port

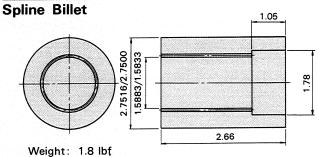

SAE straight thread O-ring boss connection


DIRECTION OF ROTATION

L:SUPPLIED HIGH PRESSURE OIL AT PORT L. R:SUPPLIED HIGH PRESSURE OIL AT PORT R.

Optional Shaft Dimensions

M10 0.78deep



From flange mount surface

Type of Spline: Involute: Flat root side fit: Pressure angle 30°: Pitch 12/24 Class 1 fit: To B.S.3550 or A.S.A.—B5—15.

No.of teeth	Pitch Dia. "A"	Base Dia. "B"	Tooth Thickness "C"		Form Dia. "E"	Minor Dia. "F"	Fillet Radius "G"	"H"	"J"
20	1.6667	1.4434	0.1294 0.1263	1.7293 1.7243	1.5793	1.5627 1.5497	0.014	2.58	1.57

Involute Spline (Flat root side fit, Class 1 fit) B.S.3550 or A.S.A-B5-15

Allowable Pressure for Spline Billet:4000psi

No.of Teeth:

20

Pitch:

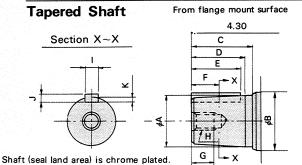
12/24

Pressure Angle: 30°

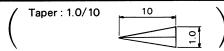
Pitch Dia:

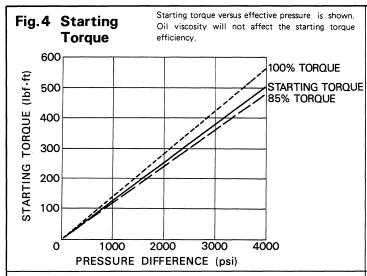
1.6667

Major Dia:


1.7630/1.7500

Minor Dia:


1.5883/1.5833


Space Width:

0.1339/0.1326

Α	В	С	D	E	F	G	Н	I.	J	κ
1.7717 1.7710	2.36	2.32	2.13	1.97	1.06	0.98	M16	0.5512 0.5495	0.3543 0.3508	0.2244 0.2165

Case leakage (from motor drain ports) Fig. 5 Case Leakage relative to various speeds is shown for 4 motor pressures.

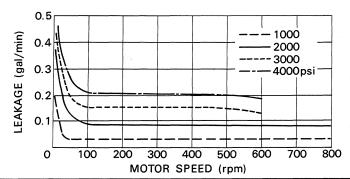


Fig. 6 Minimum **Boost Pressure**

It is important that sufficient inlet pressure is maintained when the motor is operated as a pump or when the load overruns the motor, to prevent cavitation.

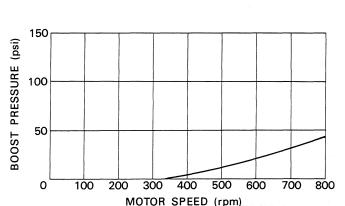


Fig. 7 Pressure

Pressure necessary to run motor without load is shown for various speeds.

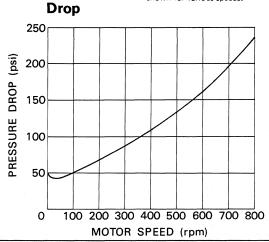
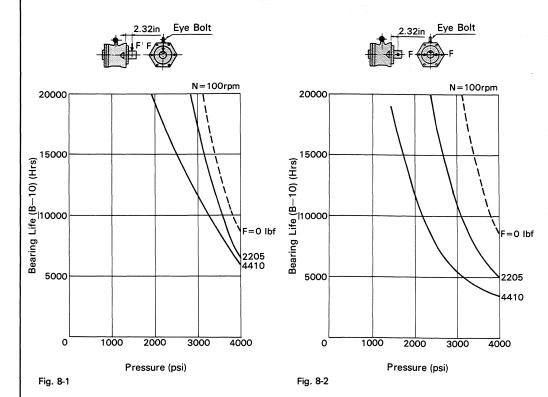
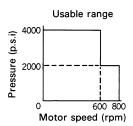



Fig. 8 Bearing Life and Motor Shaft Radial Load

- 1. If motors are operated on the proper conditions, the operational life is determined by the Bearing l ife
- 2. In order to maintain the maximum bearing life, when a radial load is imposed on the output shaft the motor should be installed as illustrated in Fig. 8;
 - For a uni-directional application, motor should be installed so that side load acts as shown in figure 8.1.
 - For a bi-directional application, involving a radial load for each rotation, then the motor should be installed so that side loads act as shown in figure 8.2.
- 3. The graphs shown are the bearing life (B-10 Life) at 100 rpm shaft speed for various pressures and radial loads.
 - When the shaft speed differs from 100 rpm, the bearing life can be obtained by the formula below

B-10 Life = (Bearing Life obtainable in the graph at 100 rpm)

100 Actual Shaft Speed


In case where the side load acts at a different position to the mid point of the shaft projection please refer to us.

4. Maximum allowable radial load (load applied at the mid-point of shaft projection)

I	Working Pressure (psi)	2000	3000	4000
-	Max. Allowable Radial Load (lbf)	6200	6000	5700

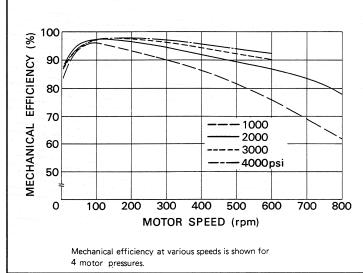
5. Applications with axial thrust loads should be referred to us.

Eaton® ME300


Displacement : 18.55 in³/rev.
Rated Pressure : 4000 psi
Peak Pressure : 4700 psi
Rated Torque : 984 lbf·ft
Rated Speed : 600 rpm
Max. Speed : 800 rpm
Max. Horse Power : 112 hp
Weight : 117 lb

The graphs shown are mean values obtained from production units.

FLUID; SHELL TELLUS 56 (VISCOSITY 170 SUS at 122°F)



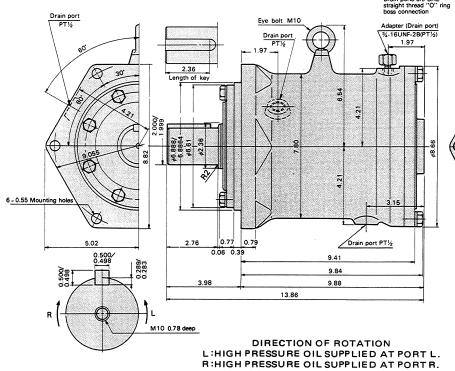
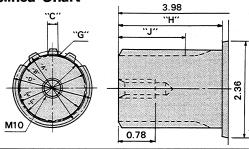


Fig. 3 Volumetric Efficiency

Volumetric efficiency at various speeds is shown for 4 motor pressures.

Nominal Dimensions

Feed Ports 2-ø0.75


Feed ports SAE 4bolts split flange

Drain port

SAE straight thread O-ring boss connection

Optional Shaft Dimensions

Splined Shaft

From flange mount surface

Type of Spline: Involute: Flat root side fit: Pressure angle 30°: Pitch 12/24 Class 1 fit:To B.S.3550 or A.S.A.-B5-15.

No.of teeth	Pitch Dia. "A"	Base Dia. "B"	Tooth Thickness "C"	Major Dia. "D"	Form Dia. "E"	Minor Dia. "F"	Fillet Radius "G"	"H"	in the second of
20	1.6667	1.4434	0.1294 0.1263	1.7293 1.7243	1.5793	1.5627 1.5497	0.014	2.68	1.77

Spline Billet 0.95 1.5883/1.5833 1.78 2.76 Weight: 2.0 lbf

Involute Spline (Flat root side fit, Class 1 fit) B.S.3550 or A.S.A-B5-15

Allowable Pressure for Spline Billet: 4000 psi

No.of Teeth:

20

Pitch:

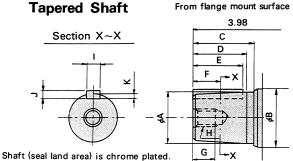
12/24

Pressure Angle: 30° Pitch Dia:

1.6667

Major Dia:

1.7630/1.7500


Minor Dia:

1.5883/1.5833

Space Width:

0.1339/0.1326

Tapered Shaft

A	В	С	D	. E	F	G	Н	ı	J	К
1.9685 1.9679	2.362	2.323	2.126	1.890	1.063	0.984	M16	0.6299 0.6282	0.3937 0.3902	0.2441 0.2362

Taper: 1.0/10

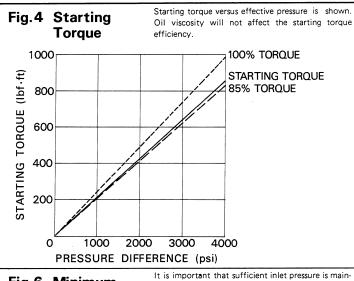


Fig. 5 Case Leakage Case leakage tronumous speeds is shown for 4 motor

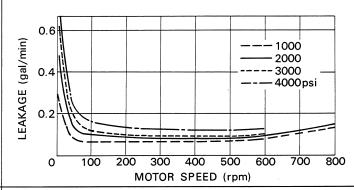
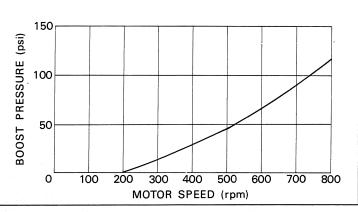



Fig.6 Minimum **Boost Pressure**

tained when the motor is operated as a pump or when the load overruns the motor, to prevent cavitation

Pressure necessary to run motor without load is Fig. 7 Pressure shown for various speeds. Drop 400 (psi) 300 PRESSURE DROP 200 100 500 600 700 800 0 100 200 300 400

MOTOR SPEED (rpm)

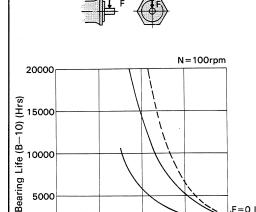
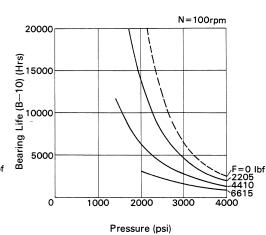

Note

Fig. 8 Bearing Life and Motor Shaft Radial Load

Eye Bolt


3000

4000

2.6in

Eye Bolt 2 6in

Pressure (psi) Fig. 8-1

2000

1000

Fig. 8-2

- 1. If motors are operated on the proper conditions, the operational life is determined by the Bearing Life.
- 2. In order to maintain the maximum bearing life, when a radial load is imposed on the output shaft the motor should be installed as illustrated in Fig. 8;

For a uni-directional application, motor should be installed so that side load acts as shown in figure 8.1.

For a bi-directional application, involving a radial load for each rotation, then the motor should be installed so that side loads act as shown in figure 8.2.

3. The graphs shown are the bearing life (B-10 Life) at 100 rpm shaft speed for various pressures and radial loads.

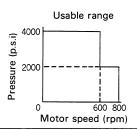
When the shaft speed differs from 100 rpm, the bearing life can be obtained by the formula

B-10 Life = (Bearing Life obtainable in the graph at 100 rpm)

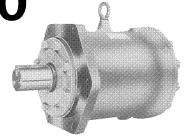
100 Actual Shaft Speed

In case where the side load acts at a different position to the mid point of the shaft projection please refer to us.

4. Maximum allowable radial load (load applied at the mid-point of shaft projection)

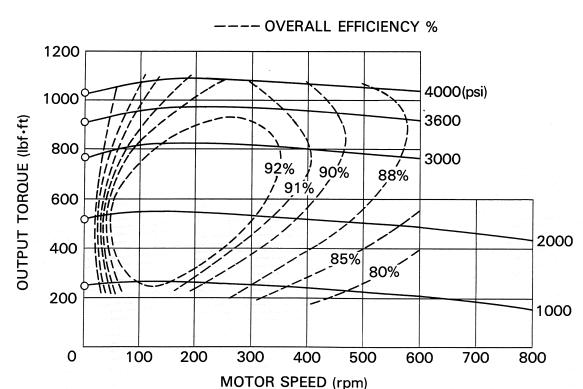

Working Pressure (psi)	2000	3000	4000
Max. Allowable Radial Load (lbf	6500	6400	6300

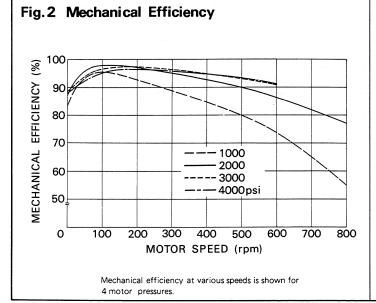
5. Applications with axial thrust loads should be referred to us.


5000

0

Eaton® ME350


Displacement	:	21.36 in ³ /rev
Rated Pressure	:	4000 psi
Peak Pressure	:	4700 psi
Rated Torque	:	1133 lbf · ft
Rated Speed	:	600 rpm
Max. Speed	:	800 rpm
Max. Horse Power	:	129 hp
Weight	:	117 lb



The graphs shown are mean values obtained from production units.

FLUID; SHELL TELLUS 56 (VISCOSITY 170 SUS at 122°F)

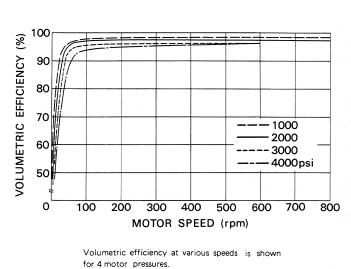
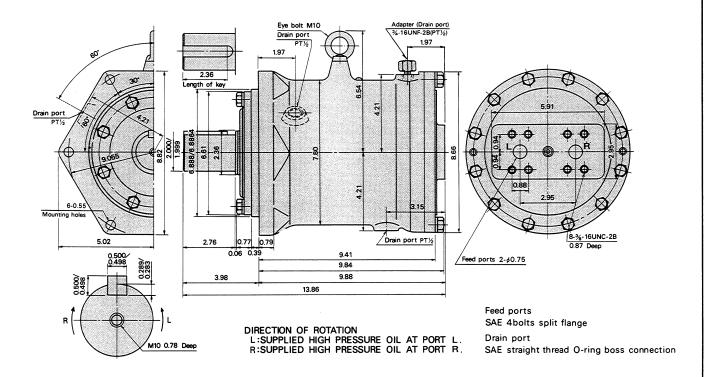
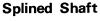
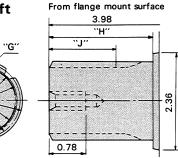
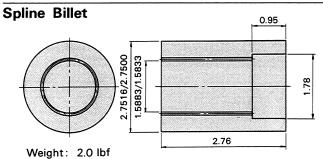




Fig. 3 Volumetric Efficiency


Nominal Dimensions

Optional Shaft Dimensions



M10

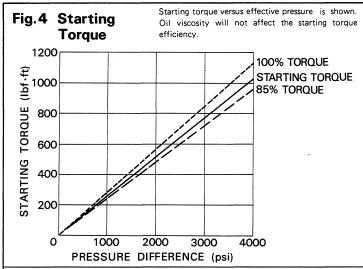
Type of Spline: Involute: Flat root side fit: Pressure angle 30°: Pitch 12/24 Class 1 fit: To B.S. 3550 or A.S.A. - B5 - 15.

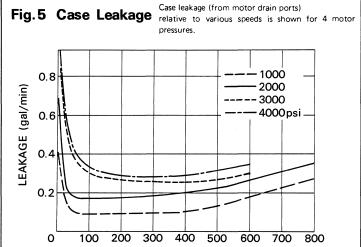
	No.of teeth	Pitch Dia. "A"	Base Dia. "B"	Tooth Thickness "C"	Major Dia. "D"	Form Dia. "E"	Minor Dia. "F"	Fillet Radius "G"	"H"	"J"
ſ	20	1.6667	1.4434	0.1294 0.1263	1.7293 1.7243	1.5793	1.5627 1.5497	0.014	2.68	1.77

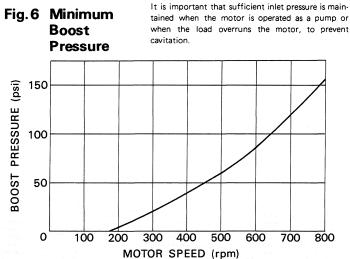
Involute Spline (Flat root side fit, Class 1 fit) B.S.3550 or A.S.A-B5-15

Allowable Pressure for Spline Billet: 4000 psi

No.of Teeth: 20 Pitch: 12/24 Pressure Angle: 30° Pitch Dia: 1.6667


Major Dia: 1.7630/1.7500 Minor Dia: 1.5883/1.5833 Space Width: 0.1339/0.1326


Tapered Shaft	From flange mount surface
-	3.98
Section X~X	С
	D E F X


Shaft (seal land area) is chrome plated.

Α	В	С	D	Е	F	G	Н	I	J	К
1.9685 1.9679	2.362	2.323	2.126	1.890	1.063	0.984	M16	0.6299 0.6282	0.3937 0.3902	0.2441 0.2362

Taper: 1.0/10

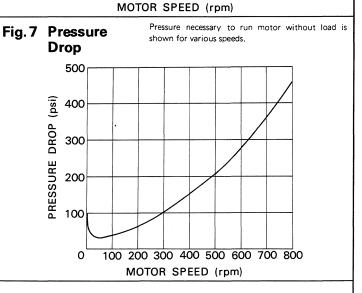


Fig. 8 Bearing Life and Motor Shaft Radial Load

Note

- If motors are operated on the proper conditions, the operational life is determined by the Bearing Life.
- In order to maintain the maximum bearing life, when a radial load is imposed on the output shaft the motor should be installed as illustrated in Fig. 8;
 - For a uni-directional application, motor should be installed so that side load acts as shown in figure 8.1.
 - For a bi-directional application, involving a radial load for each rotation, then the motor should be installed so that side loads act as shown in figure 8.2.
- The graphs shown are the bearing life (B-10 Life) at 100 rpm shaft speed for various pressures and radial loads.

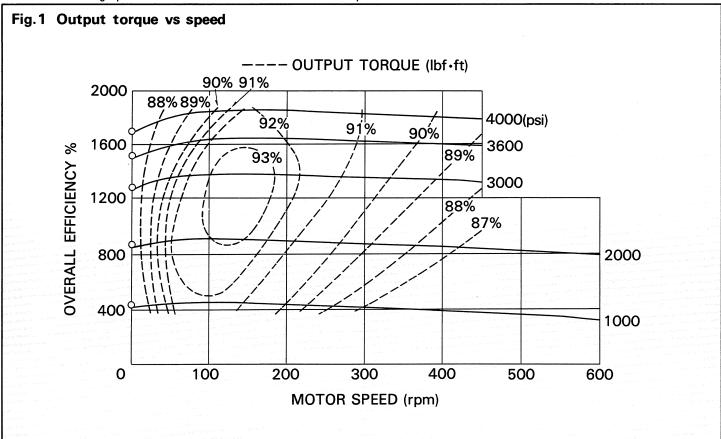
When the shaft speed differs from 100 rpm, the bearing life can be obtained by the formula below:

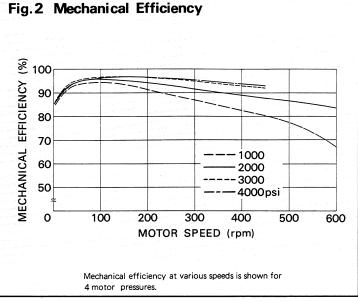
B-10 Life = (Bearing Life obtainable in the graph at 100 rpm)

× 100 Actual Shaft Speed

In case where the side load acts at a different position to the mid point of the shaft projection please refer to us.

4. Maximum allowable radial load (load applied at the mid-point of shaft projection)

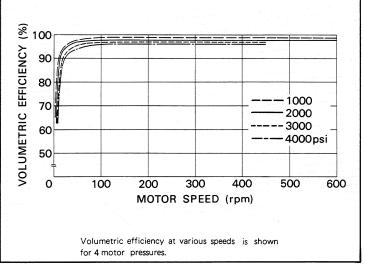
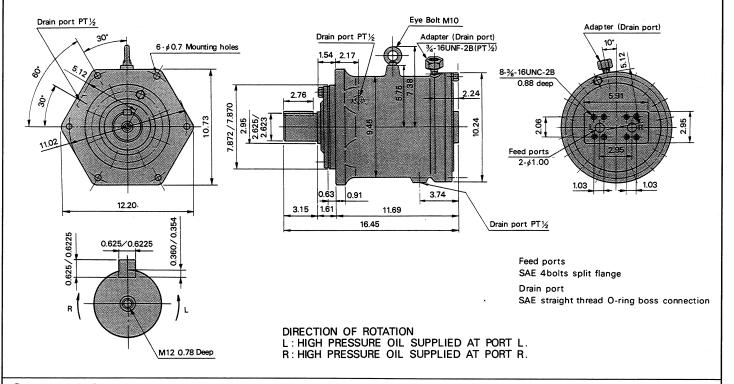

Working Pressure (psi)	2000	3000	4000	
Max. Allowable Radial Load (lbf)	6400	6300	6050	

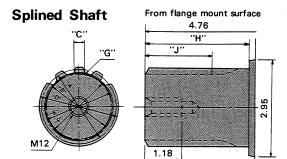

5. Applications with axial thrust loads should be re-

Eaton ME600A Usable range Displacement : 36.74 in³/rev. 4000 **Rated Pressure** : 4000 psi Pressure (p.s.i) : 4700 psi Peak Pressure : 1948 lbf·ft Rated Torque Rated Speed : 450 rpm Max. Speed : 600 rpm Max. Horse Power: 167 hp 450 600 Weight : 203 lb Motor speed (rpm)

The graphs shown are mean values obtained from production units.

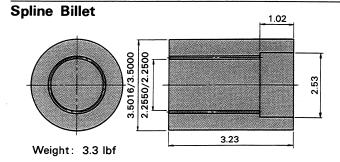
FLUID; SHELL TELLUS 56 (VISCOSITY 170 SUS at 122°F)


Fig. 3 Volumetric Efficiency

ME600A

Nominal Dimensions



Optional Shaft Dimensions

Type of Spline:Involute:Flat root side fit: Pressure angle 30°:Pitch 8/16 Class 1 fit:To B.S.3550 or A.S.A.-B5-15.

No.of teeth	Pitch Dia. "A"	Base Dia. "B"	Tooth Thickness "C"		Form Dia. "E"	Minor Dia. "F"	Fillet Radius "G"	"H"	"J"
19	2.3750	2.0568	0.1928 0.1914	2.4710 2.4660	2.2452	2.2210 2.2030	0.039	3.15	2.17

Involute Spline (Flat root side fit, Class 1 fit) B.S.3550 or A.S.A-B5-15

Allowable Pressure for Spline Billet: 4000 psi

No.of Teeth:

19

Pitch:

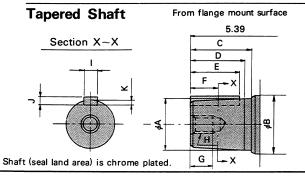
8/16

Pressure Angle: 30°

Pitch Dia:

2.3750

Major Dia:


2.5180/2.5000

Minor Dia:

2.2550/2.2500

Space Width:

0.1996/0.1982

Α	В	С	D	E	F	G	Н	I :	J	K
2.5591 2.5579	2.95	3.35	3.15	2.91	1.57	1.18	M24	0.7087 0.7070	0.4331 0.4287	0.2835 0.2756

Taper: 1.0/10

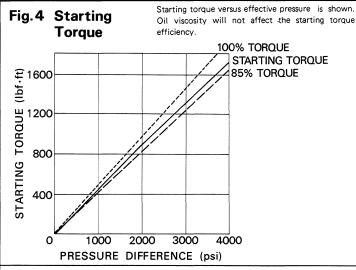
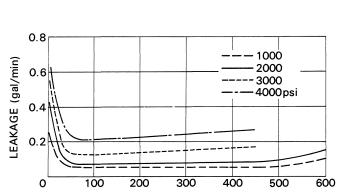



Fig. 5 Case Leakage relative to various speeds is shown for 4 moto

pressures.

Case leakage (from motor drain ports)

It is important that sufficient inlet pressure is main-Fig. 6 Minimum tained when the motor, is operated as a pump or **Boost** when the load overruns the motor, to prevent cavitation. **Pressure** 140 (psi) 120 100 BOOST PRESSURE 80 60 40 20 0 200 300 400

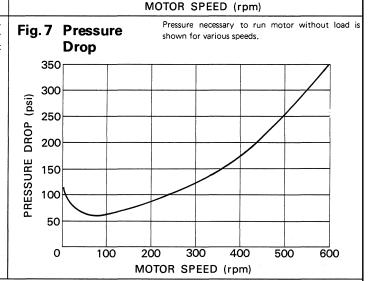
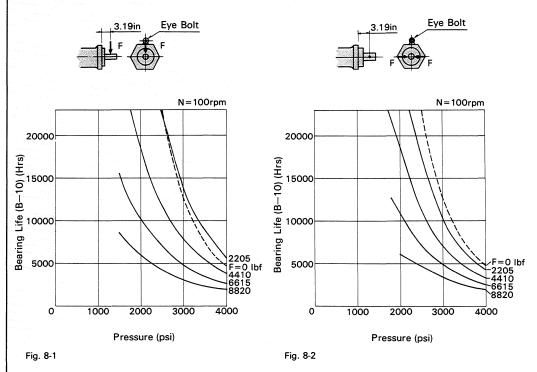



Fig. 8 Bearing Life and Motor Shaft Radial Load

MOTOR SPEED (rpm)

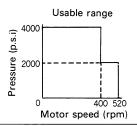
Note

- 1. If motors are operated on the proper conditions, the operational life is determined by the Bearing
- 2. In order to maintain the maximum bearing life, when a radial load is imposed on the output shaft the motor should be installed as illustrated in Fig. 8;
 - For a uni-directional application, motor should be installed so that side load acts as shown in figure 8.1.
 - For a bi-directional application, involving a radial load for each rotation, then the motor should be installed so that side loads act as shown in figure 8.2.
- 3. The graphs shown are the bearing life (B-10 Life) at 100 rpm shaft speed for various pressures and radial loads.

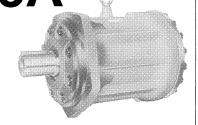
When the shaft speed differs from 100 rpm, the bearing life can be obtained by the formula below

B-10 Life = (Bearing Life obtainable in the graph at 100 rpm)

100 **Actual Shaft Speed**

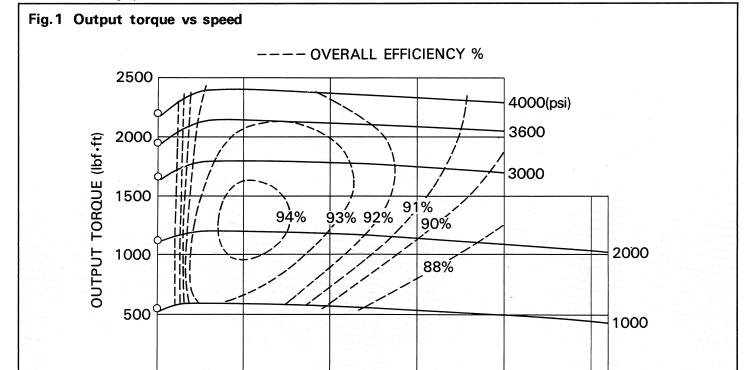

In case where the side load acts at a different position to the mid point of the shaft projection please refer to us.

4. Maximum allowable radial load (load applied at the mid-point of shaft projection)


Max. Allowable Radial Load (lbf) 10700 10500 10400	Working Pressure (psi)	2000	3000	4000
	Max. Allowable Radial Load (lbf)	10700	10500	10400

5. Applications with axial thrust loads should be referred to us.

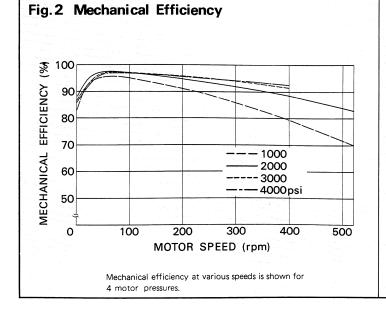
Eaton® ME 750A



Displacement	:	45.76 in ³ /rev
Rated Pressure	:	4000 psi
Peak Pressure	:	4700 psi
Rated Torque	:	2426 lbf·ft
Rated Speed	:	400 rpm
Max. Speed	:	520 rpm
Max. Horse Power	:	185 hp
Weight	:	265 lb

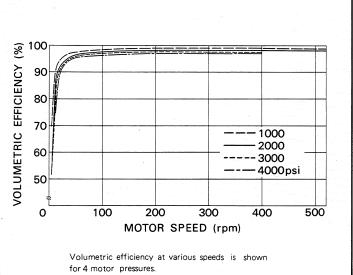
The graphs shown are mean values obtained from production units.

FLUID; SHELL TELLUS 56 (VISCOSITY 170 SUS at 122°F)


300

400

Fig. 3 Volumetric Efficiency


200

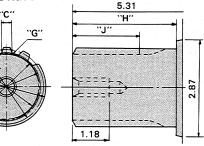
MOTOR SPEED (rpm)

100

0

500

ME750A


Nominal Dimensions

Optional Shaft Dimensions

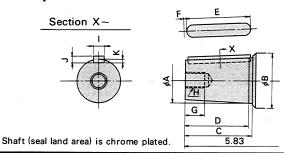
M16

From flange mount surface

Type of Spline: Involute: Flat root side fit: Pressure angle 30°: Pitch 5/10 Class 1 fit: To B.S. 3550 or A.S.A. – B5 – 15.

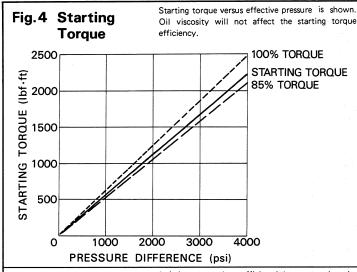
No.of teeth	Pitch Dia. "A"	Base Dia. "B"	Tooth Thickness "C"	Major Dia. "D"	Form Dia. "E"	Minor Dia. "F"	Fillet Radius "G"	"H"	. "J"
12	2.4000	2.0785	0.3124 0.3089	2.5560 2.5480	2.2069	2.1560 2.1310	0.039	3.54	2.20

Involute Spline (Flat root side fit, Class 1 fit) B.S.3550 or A.S.A-B5-15


Allowable Pressure for Spline Billet: 4000 psi

No.of Teeth: 12 Pitch: 5/10 Pressure Angle: 30° Pitch Dia: 2.4000

Major Dia: 2.6250/2.6000 Minor Dia: 2.2197/2.2117 Space Width: 0.3178/0.3163


Tapered Shaft

From flange mount surface

Α	В	С	D	Е	F	G	Н		J	K
2.3819 2.3811	2.953	3.543	3.346	3.346	0.079	1.575	M24	0.6299 0.6282	0.394 0.390	0.244 0.236

Taper: 1.0/10

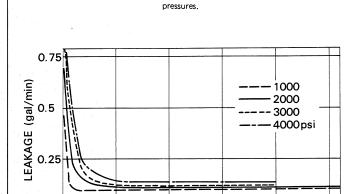
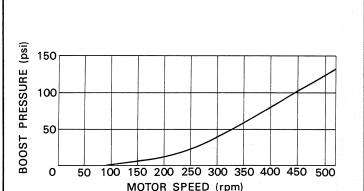



Fig. 5 Case Leakage Case leakage (from motor drain ports) relative to various speeds is shown for 4 motor

Fig. 6 Minimum Boost Pressure

It is important that sufficient inlet pressure is maintained when the motor is operated as a pump or when the load overruns the motor, to prevent cavitation.

MOTOR SPEED (rpm)

Pressure necessary to run motor without load is shown for various speeds.

300

400

500

200

100

0

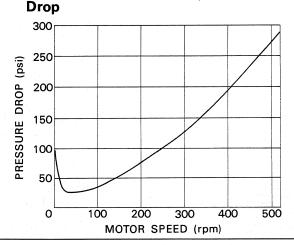
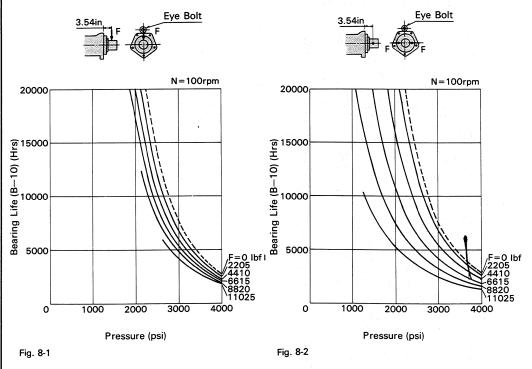



Fig. 8 Bearing Life and Motor Shaft Radial Load

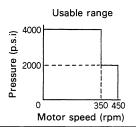
Note

- If motors are operated on the proper conditions, the operational life is determined by the Bearing Life.
- In order to maintain the maximum bearing life, when a radial load is imposed on the output shaft the motor should be installed as illustrated in Fig. 8;
 - For a uni-directional application, motor should be installed so that side load acts as shown in figure 8.1.
 - For a bi-directional application, involving a radial load for each rotation, then the motor should be installed so that side loads act as shown in figure 8.2.
- The graphs shown are the bearing life (B-10 Life) at 100 rpm shaft speed for various pressures and radial loads.

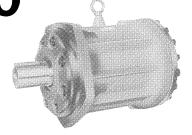
When the shaft speed differs from 100 rpm, the bearing life can be obtained by the formula below:

B-10 Life = (Bearing Life obtainable in the graph at 100 rpm)

× 100 Actual Shaft Speed


In case where the side load acts at a different position to the mid point of the shaft projection please refer to us.

 Maximum allowable radial load (load applied at the mid-point of shaft projection)


Working Pressure (psi)	2000	3000	4000	
Max. Allowable Radial Load (lbf)	11900	11900	11500	

5. Applications with axial thrust loads should be re-

Eaton® ME850

Displacement : 51.68 in³/rev.
Rated Pressure : 4000 psi
Peak Pressure : 4700 psi
Rated Torque : 2740 lbf·ft
Rated Speed : 350 rpm
Max. Speed : 450 rpm
Max. Horse Power : 183 hp
Weight : 265 lb

The graphs shown are mean values obtained from production units.

FLUID; SHELL TELLUS 56 (VISCOSITY 170 SUS at 122°F)

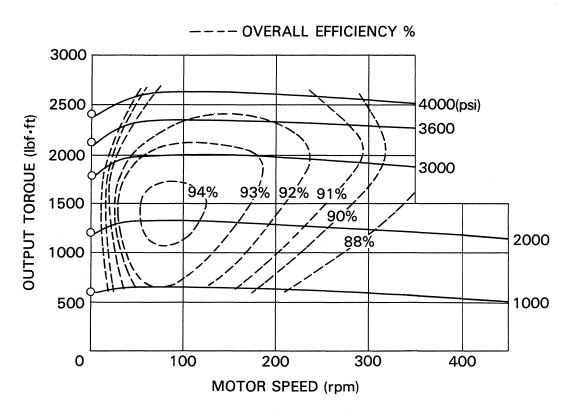


Fig. 2 Mechanical Efficiency

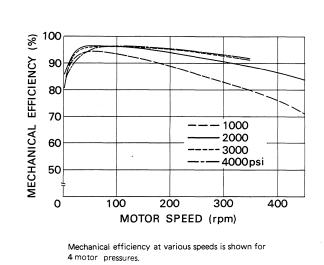
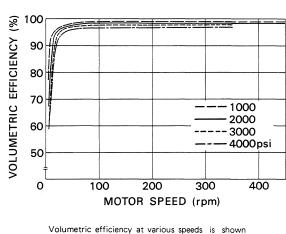
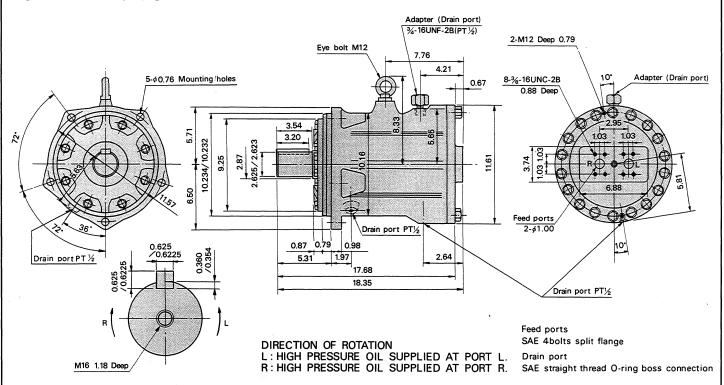
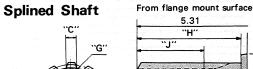
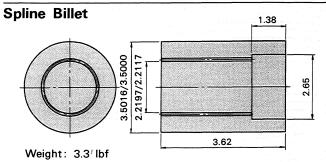




Fig. 3 Volumetric Efficiency


Volumetric efficiency at various speeds is shown for 4 motor pressures.

Nominal Dimensions

Optional Shaft Dimensions


M16

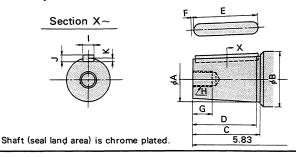
2.87 1.18

Type of Spline: Involute: Flat root side fit: Pressure angle 30°: Pitch 5/10 Class 1 fit:To B.S.3550 or A.S.A.-B5-15.

No.of teeth	Pitch Dia. "A"	Base Dia. "B"	Tooth Thickness "C"	Major Dia. "D"	Form Dia. "E"	Minor Dia. "F"	Fillet Radius "G"	"H"	" J"
12	2.4000	2.0785	0.3124 0.3089	2.5560 2.5480	2.2069	2.1560 2.1310	0.039	3.54	2.20

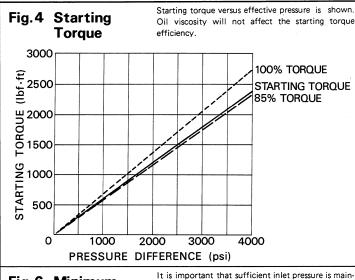
Involute Spline (Flat root side fit, Class 1 fit) B.S.3550 or A.S.A-B5-15

Allowable Pressure for Spline Billet: 4000 psi


No.of Teeth: 12 Pitch: 5/10

Pressure Angle: 30°

Pitch Dia: 2.4000 Major Dia: 2.6250/2.6000


Minor Dia: 2.2197/2.2117 Space Width: 0.3178/0.3163

Tapered Shaft From flange mount surface

Α	В	С	, D	E	F	G	Н	١	J	Κ
2.3819 2.3811	2.953	3.543	3.346	3.346	0.079	1.575	M24	0.6299 0.6282	0.394 0.390	0.244 0.236

Taper: 1.0/10

Case leakage (from motor drain ports) Fig. 5 Case Leakage relative to various speeds is shown for 4 motor

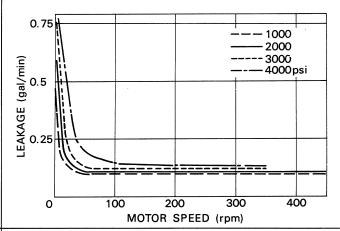


Fig. 6 Minimum **Boost Pressure**

0

100

tained when the motor is operated as a pump or when the load overruns the motor, to prevent cavitation.

300

400

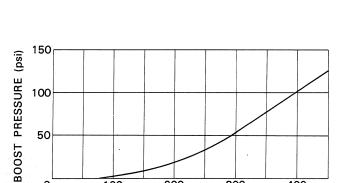


Fig. 7 Pressure Drop

Pressure necessary to run motor without load is shown for various speeds.

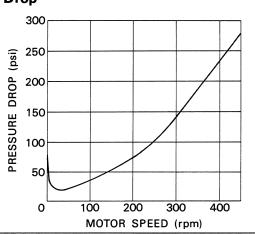
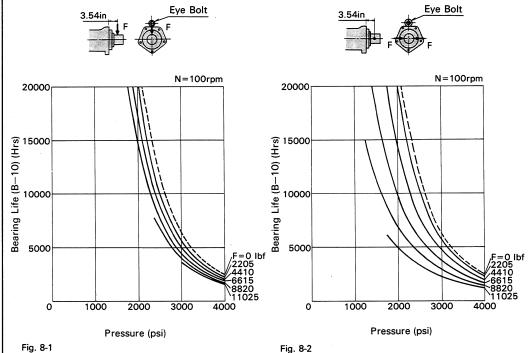



Fig. 8 Bearing Life and Motor Shaft Radial Load

200

MOTOR SPEED (rpm)

- 1. If motors are operated on the proper conditions, the operational life is determined by the Bearing Life
- 2. In order to maintain the maximum bearing life, when a radial load is imposed on the output shaft the motor should be installed as illustrated

For a uni-directional application, motor should be installed so that side load acts as shown in figure 8.1.

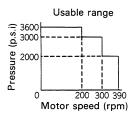
For a bi-directional application, involving a radial load for each rotation, then the motor should be installed so that side loads act as shown in figure 8.2.

3. The graphs shown are the bearing life (B-10 Life) at 100 rpm shaft speed for various pressures and radial loads.

When the shaft speed differs from 100 rpm, the bearing life can be obtained by the formula

=(Bearing Life obtainable in the graph at 100 rpm)

100 **Actual Shaft Speed**


In case where the side load acts at a different position to the mid point of the shaft projection please refer to us.

Maximum allowable radial load (load applied at the mid-point of shaft projection)

Working Pressure (psi)	2000	3000	4000	
Permissible Radial Load (lbf)	11900`	11700	10800	

5. Applications with axial thrust loads should be referred to us.

Eaton® ME1300A

Displacement	: 82.06 in ³ /rev.
Rated Pressure	: 3600 psi
Peak Pressure	: 4700 psi
Rated Torque	: 3916 lbf-ft
Rated Speed	: 200 rpm
Max. Speed	: 390 rpm
Max. Horse Power	: 186 hp
Weight	: 375 lb

The graphs shown are mean values obtained from production units.

FLUID; SHELL TELLUS 56 (VISCOSITY 170 SUS at 122°F)

Fig.1 Output torque vs speed

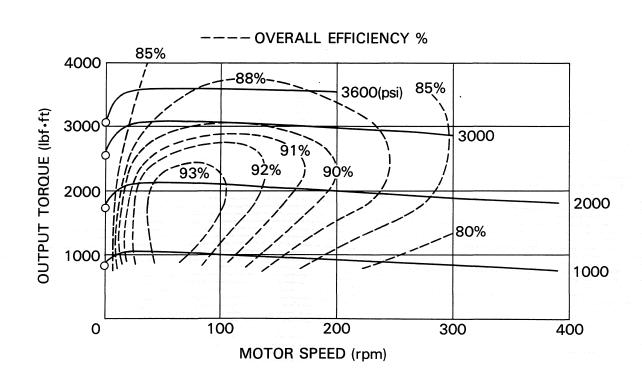
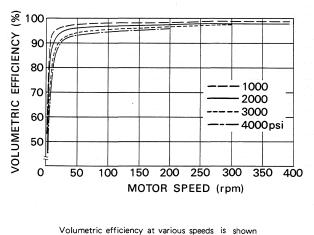
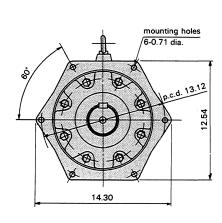
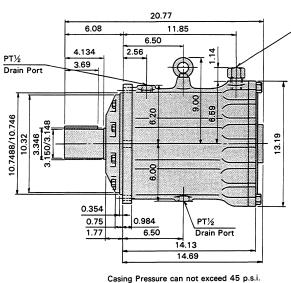



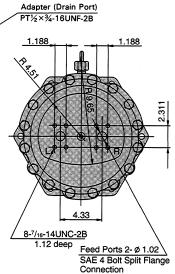
Fig. 2 Mechanical Efficiency

Mechanical efficiency at various speeds is shown for 4 motor pressures.


MOTOR SPEED (rpm)

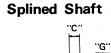

Fig. 3 Volumetric Efficiency

Volumetric efficiency at various speeds is shown for 4 motor pressures.

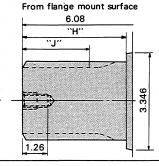

Nominal Dimensions

L:SUPPLIED HIGH PRESSURE OIL AT PORT L. R:SUPPLIED HIGH PRESSURE OIL AT PORT R.

DIRECTION OF ROTATION


0.875/0.872 0.875/0.872 R 1 M16 1.26 Deep

Feed ports SAE 4bolts split flange


Drain port

SAE straight thread O-ring boss connection

Optional Shaft Dimensions

M16

Type of Spline: Involute: Flat root side fit: Pressure angle 30°: Pitch 5/10 Class 1 fit:To B.S.3550 or A.S.A.-B5-15.

No.of teeth	Pitch Dia. "A"	Base Dia. "B"	Tooth Thickness "C"	Dia. "D"	Form Dia. "E"	Minor Dia. "F"	Fillet Radius "G"	"H"	"ل"
15	3.0000	2.5981	0.3120 0.3087	3.1560 3.1480	2.7992	2.7560 2.7310	0.035	4.134	3.01

Spline Billet 1.18 3.0118/3.0038 3.23 4.19 Weight: 6.6 lbf

Involute Spline (Flat root side fit, Class 1 fit) B.S.3550 or A.S.A-B5-15

Allowable Pressure for Spline Billet: 3600 psi

No.of Teeth:

15

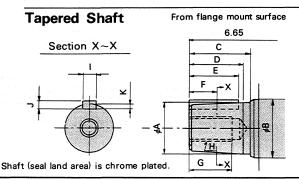
Pitch:

5/10 Pressure Angle: 30°

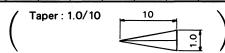
Pitch Dia:

3.0000

Major Dia:


3.2250/3.2000

Minor Dia:


2.8132/2.8052

Space Width:

0.3179/0.3164

	Α	В	С	D	Е	F	G	Н	1	. J	к
-	3.150 3.149	3.346	4.13	3.976	3.54	1.988	2.54	M24	0.8661 0.8641	0.5512 0.5469	0.3622 0.3543

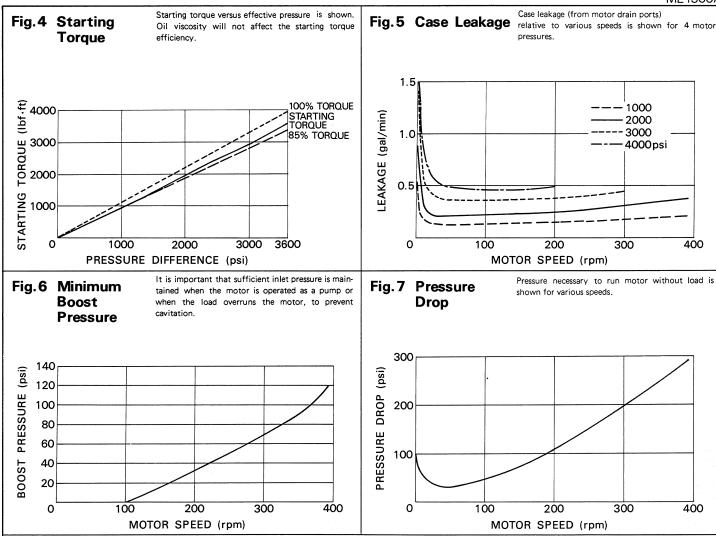
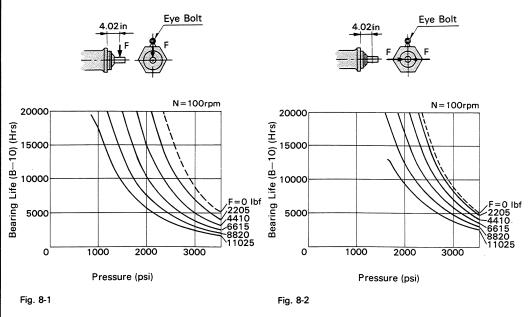



Fig. 8 Bearing Life and Motor Shaft Radial Load

Note

- If motors are operated on the proper conditions, the operational life is determined by the Bearing Life.
- In order to maintain the maximum bearing life, when a radial load is imposed on the output shaft the motor should be installed as illustrated in Fig. 8;

For a uni-directional application, motor should be installed so that side load acts as shown in figure 8.1.

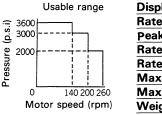
For a bi-directional application, involving a radial load for each rotation, then the motor should be installed so that side loads act as shown in figure 8.2.

 The graphs shown are the bearing life (B-10 Life) at 100 rpm shaft speed for various pressures and radial loads.

When the shaft speed differs from 100 rpm, the bearing life can be obtained by the formula below:

B-10 Life = (Bearing Life obtainable in the graph at 100 rpm)

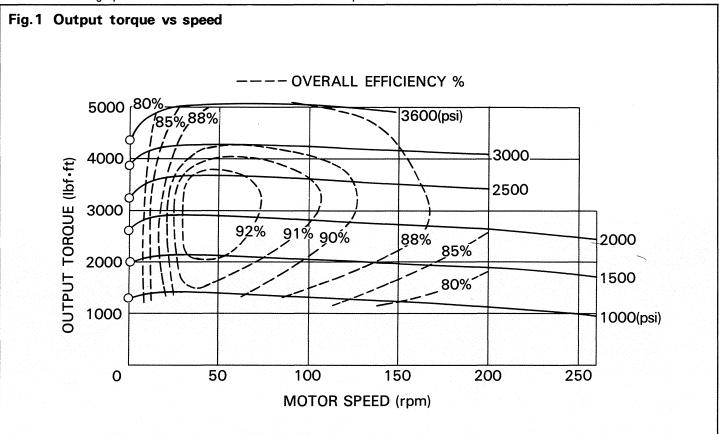
× 100 Actual Shaft Speed

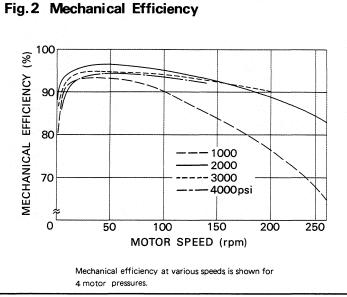

In case where the side load acts at a different position to the mid point of the shaft projection please refer to us.

4. Maximum allowable radial load (load applied at the mid-point of shaft projection)

Working Pressure (psi)	2000	3000	3600
Permissible Radial Load (lbf)	9300	8600	7900

5. Applications with axial thrust loads should be referred to us.


Eaton ME1900 Displacement : 113.97 in³/rev. : 3600 psi **Rated Pressure** : 4700 psi Peak Pressure : 5438 lbf·ft Rated Torque



Rated Speed : 140 rpm Max. Speed : 260 rpm Max. Horse Power: 173 hp Weight : 595 lb

The graphs shown are mean values obtained from production units.

FLUID; SHELL TELLUS 56 (VISCOSITY 170 SUS at 122°F)

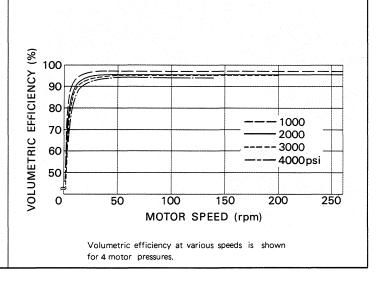
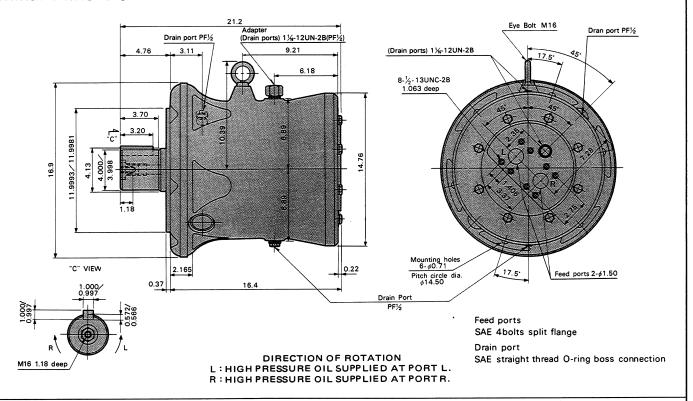
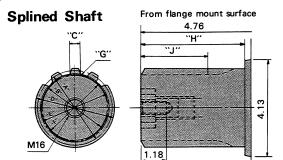
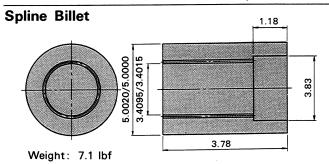




Fig. 3 Volumetric Efficiency

Nominal Dimensions



Optional Shaft Dimensions

Type of Spline: Involute: Flat root side fit: Pressure angle 30°: Pitch 5/10 Class 1 fit: To B.S.3550 or A.S.A.—B5—15.

No.of teeth	Pitch Dia. "A"	Base Dia. "B"	Tooth Thickness "C"		Form Dia "E"	Minor Dia. "F"	Fillet Radius "G"	"H"	"J"
18	3.6000	3.1177	0.3123 0.3085	3.7560 3.7480	3.3943	3.3560 3.3310	0.032	3.70	2.55

Involute Spline (Flat root side fit, Class 1 fit) B.S.3550 or A.S.A-B5-15

Allowable Pressure for Spline Billet: 3600 psi

No.of Teeth: 18
Pitch: 5/10
Pressure Angle: 30°

Pitch Dia: 3.6000

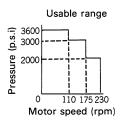
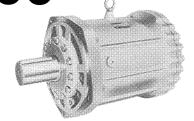
Major Dia: 3.8250/3.8000 Minor Dia: 3.4095/3.4015 Space Width: 0.3180/0.3164

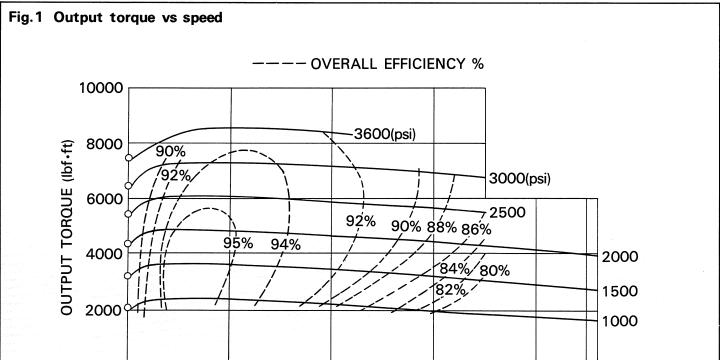
Tapered Shaft	From flange mount surface
•	4.76
Section X~X	С
-4	D E F X
ft (seal land area) is chrome plater	G x

, A	В	С	D	E	F	G	Н	l	J	К
3.9370 3.9361	4.134	3.898	3.701	3.150	1.850	2.500	М36		1	0.4016 0.3937

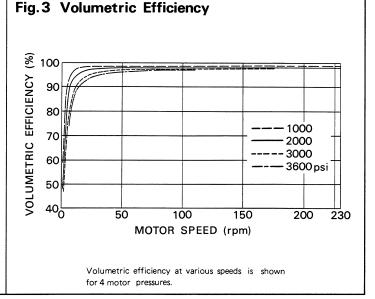
/ Taper: 1.0/10 10

Eaton® ME3100

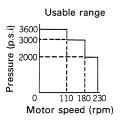




Fig. 2 Mechanical Efficiency

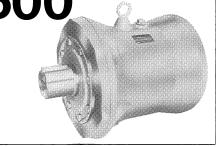
Displacement	: 189.42 in ³ /rev.
Rated Pressure	: 3600 psi
Peak Pressure	: 4700 psi
Rated Torque	: 9039 lbf·ft
Rated Speed	: 110 rpm
Max. Speed	: 230 rpm
Max. Horse Power	: 251 hp
Weight	: 802 lb


The graphs shown are mean values obtained from production units.

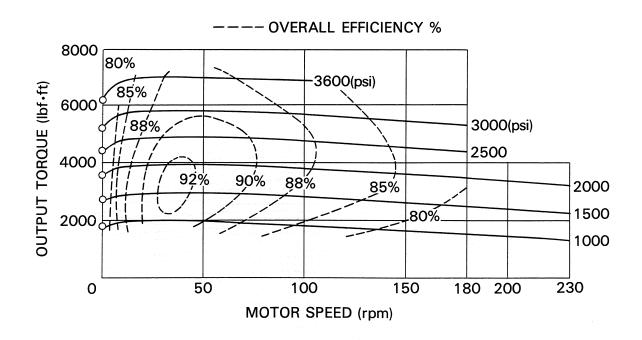
FLUID; SHELL TELLUS 56 (VISCOSITY 170 SUS at 122°F)

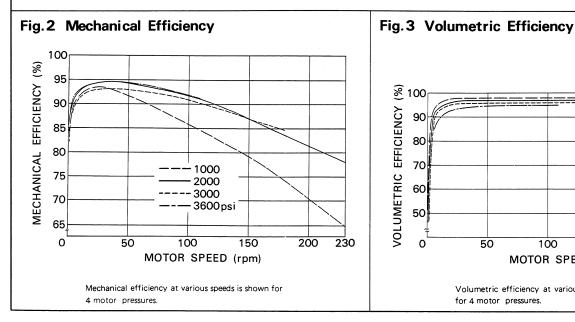


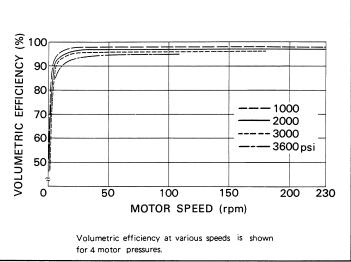
MOTOR SPEED (rpm)


MECHANICAL EFFICIENCY (%) 3600 psi 50^L MOTOR SPEED (rpm) Mechanical efficiency at various speeds is shown for 4 motor pressures.

Eaton ME2600 : 157.29 in³/rev.


Displacement Rated Pressure : 3600 psi Peak Pressure : 4700 psi Rated Torque : 7505 lbf·ft Rated Speed : 110 rpm Max. Speed : 230 rpm Max. Horse Power: 214 hp : 772 lb Weight




The graphs shown are mean values obtained from production units.

FLUID; SHELL TELLUS 56 (VISCOSITY 170 SUS at 122°F)

Fig. 1 Output torque vs speed

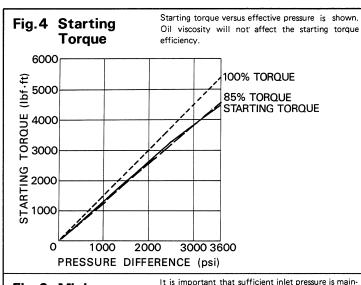


Fig. 5 Case Leakage (from motor drain ports) relative to various speeds is shown for 4 motor pressures.

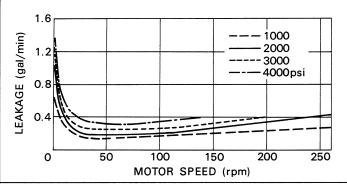
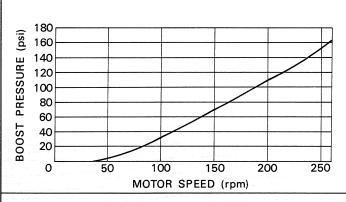



Fig. 6 Minimum **Boost Pressure**

tained when the motor is operated as a pump or when the load overruns the motor, to prevent cavitation.

Pressure necessary to run motor without load is shown for various speeds.

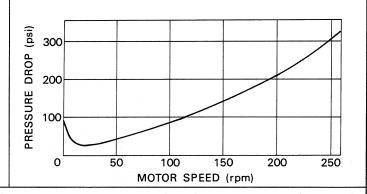
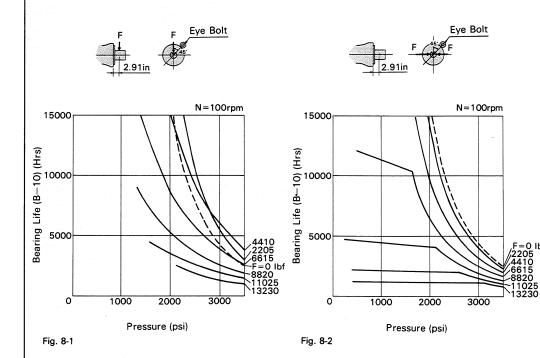



Fig. 8 Bearing Life and Motor Shaft Radial Load

Note

- 1. If motors are operated on the proper conditions, the operational life is determined by the Bearing
- 2. In order to maintain the maximum bearing life, when a radial load is imposed on the output shaft the motor should be installed as illustrated in Fig. 8;

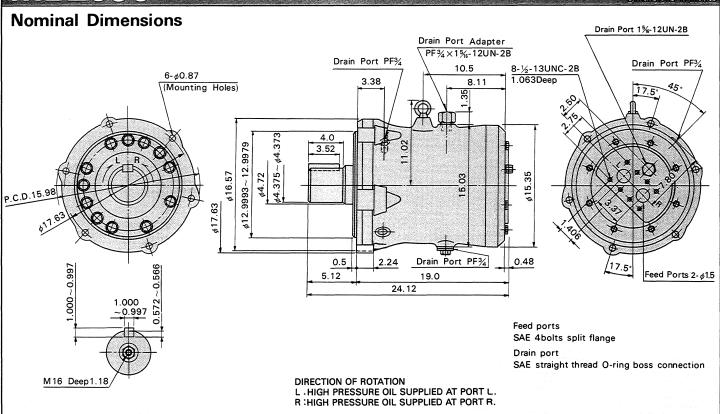
For a uni-directional application, motor should be installed so that side load acts as shown in figure 8.1.

For a bi-directional application, involving a radial load for each rotation, then the motor should be installed so that side loads act as shown in figure 8.2.

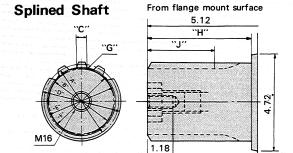
3. The graphs shown are the bearing life (B-10 Life) at 100 rpm shaft speed for various pressures and

When the shaft speed differs from 100 rpm, the bearing life can be obtained by the formula below

B-10 Life = (Bearing Life obtainable in the graph at 100 rpm)


100 Actual Shaft Speed

In case where the side load acts at a different position to the mid point of the shaft projection please refer to us.


4. Maximum allowable radial load (load applied at the mid-point of shaft projection)

Working Pressure (psi)	2000	3000	3600
Permissible Radial Load (lbf)	13400	11900	10800

5. Applications with axial thrust loads should be referred to us.



Optional Shaft Dimensions

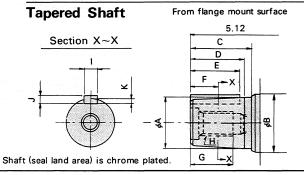
Type of Spline: Involute: Flat root side fit: Pressure angle 30°: Pitch 5/10 Class 1 fit:To B.S.3550 or A.S.A.-B5-15.

No.of teeth	Pitch Dia. "A"	Base Dia. "B"	Tooth Thickness "C"	Major Dia. "D"	Form Dia. "E"	Minor Dia. "F"	Fillet Radius "G"	"H"	"J"
20	4.0000	3.4641	0.3123 0.3084			3.7560 3.7310	0.031	4.00	2.70

Involute Spline (Flat root side fit, Class 1 fit) B.S.3550 or A.S.A-B5-15

Allowable Pressure for Spline Billet: 3600 psi

No.of Teeth: 20 Pitch: 5/10


Pressure Angle: 30° Pitch Dia: 4.0000

Major Dia:

4.2250/4.2000

Minor Dia: 3.8080/3.8000

Space Width: 0.3181/0.3165

Α	В	С	D	Е	F	G	Н	ı I	J	Κ
4.3307 4.3298	4.724	4.197	4.000	3.465	1.969	2.500	I MIZE	1		0.4016 0.3937

Taper: 1.0/10

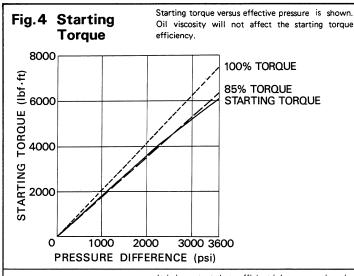


Fig. 5 Case Leakage (from motor drain ports) relative to various speeds is shown for 4 motor pressures.

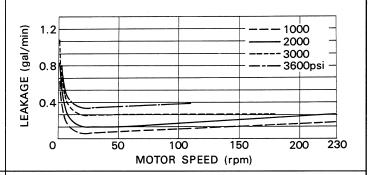


Fig. 6 Minimum
Boost
Pressure

1 t is important that sufficient inlet pressure is maintained when the motor is operated as a pump or when the load overruns the motor, to prevent cavitation.

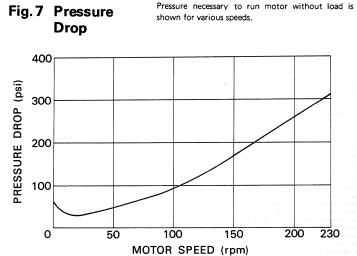
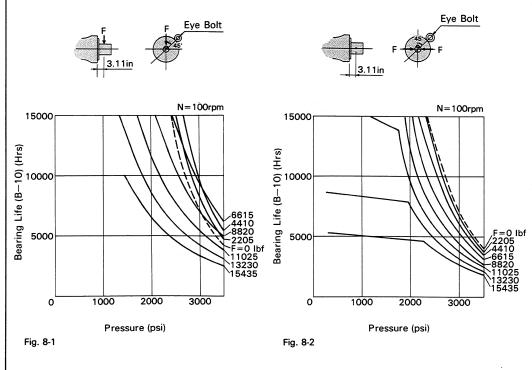


Fig. 8 Bearing Life and Motor Shaft Radial Load

MOTOR SPEED (rpm)


100

150

200

230

50

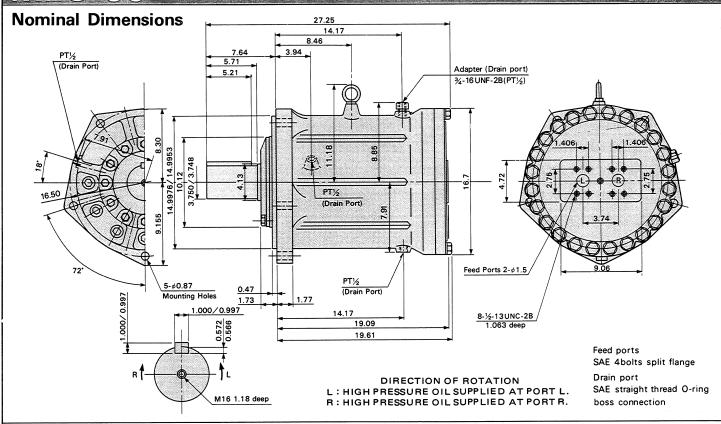
Note

- If motors are operated on the proper conditions, the operational life is determined by the Bearing Life.
- In order to maintain the maximum bearing life, when a radial load is imposed on the output shaft the motor should be installed as illustrated in Fig. 8;
 - For a uni-directional application, motor should be installed so that side load acts as shown in figure 8.1.
 - For a bi-directional application, involving a radial load for each rotation, then the motor should be installed so that side loads act as shown in figure 8.2.
- The graphs shown are the bearing life (B-10 Life) at 100 rpm shaft speed for various pressures and radial loads.

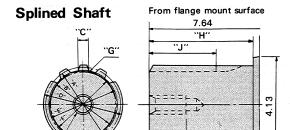
 When the control different real 100 are the control of the cont

When the shaft speed differs from 100 rpm, the bearing life can be obtained by the formula below:

B-10 Life = (Bearing Life obtainable in the graph at 100 rpm)

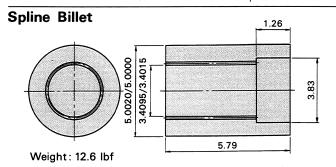

× 100 Actual Shaft Speed

In case where the side load acts at a different position to the mid point of the shaft projection please refer to us.


 Maximum allowable radial load (load applied at the mid-point of shaft projection)

Working Pressure (psi)	2000	3000	3600
Permissible Radial Load (lbf)	16300	13900	12600

Applications with axial thrust loads should be referred to us.



Optional Shaft Dimensions

Type of Spline: Involute: Flat root side fit: Pressure angle 30°: Pitch 5/10 Class 1 fit:To B.S.3550 or A.S.A.-B5-15.

	<u> </u>								
No.of teeth	Pitch Dia. "A"	Base Dia. "B"	Tooth Thickness "C"	Major Dia. "D"	Form Dia. "E"	Minor Dia. "F"	Fillet Radius "G"	"H"	
18	3.6000	3.1177	0.3107 0.3085	3.7560 3.7480	3.3943	3.3560 3.3310	0.032	5.71	4.53

1.18

Involute Spline (Flat root side fit, Class 1 fit) B.S.3550 or A.S.A-B5-15

Allowable Pressure for Spline Billet: 3600 psi

No.of Teeth:

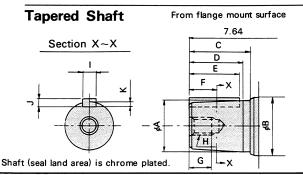
18 5/10

Pressure Angle: 30°

Pitch Dia: 3.6000

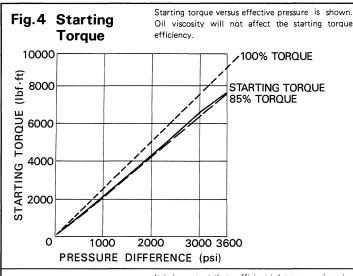
Major Dia:

3.8250/3.8000


Minor Dia:

Pitch:

3.4095/3.4015

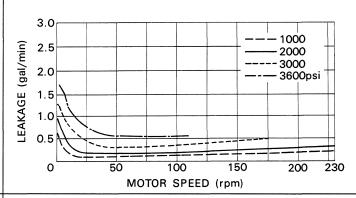
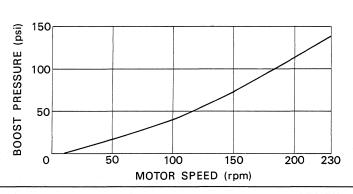

Space Width:

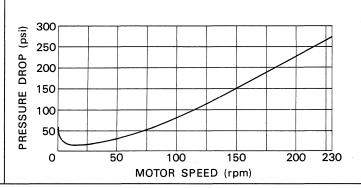
0.3180/0.3166

	Α	В	С	D	E	· F	G	Н	1	J	K
Ī	3.7402 3.7393	4.13	5.71	5.51	4.92	2.76	2.56	м36	0.9843 0.9822	0.5512 0.5469	0.3622 0.3543

Taper: 1.0/10

Case leakage (from motor drain ports) Fig. 5 Case Leakage relative to various speeds is shown for 4 motor pressures.

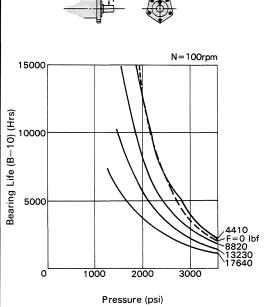




Fig. 6 Minimum **Boost Pressure**

It is important that sufficient inlet pressure is maintained when the motor is operated as a pump or when the load overruns the motor, to prevent cavitation.

Fig. 7 Pressure Drop

Pressure necessary to run motor without load is shown for various speeds.



Note

Fig. 8 Bearing Life and Motor Shaft Radial Load

Eye Bolt

Eye Bolt

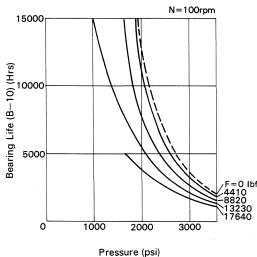


Fig. 8-2

- 1. If motors are operated on the proper conditions. the operational life is determined by the Bearing
- 2. In order to maintain the maximum bearing life, when a radial load is imposed on the output shaft the motor should be installed as illustrated in Fig. 8;

For a uni-directional application, motor should be installed so that side load acts as shown in figure 8.1.

For a bi-directional application, involving a radial load for each rotation, then the motor should be installed so that side loads act as shown in figure 8.2.

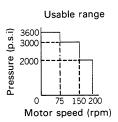
3. The graphs shown are the bearing life (B-10 Life) at 100 rpm shaft speed for various pressures and radial loads.

When the shaft speed differs from 100 rpm, the bearing life can be obtained by the formula below

B-10 Life = (Bearing Life obtainable in the graph at 100 rpm)

100 Actual Shaft Speed

In case where the side load acts at a different position to the mid point of the shaft projection please refer to us.


4. Maximum allowable radial load (load applied at the mid-point of shaft projection)

Working Pressure (psi)	2000	3000	3600
Permissible Radial Load (lbf)	16700	15400	14300

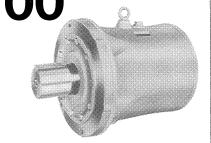
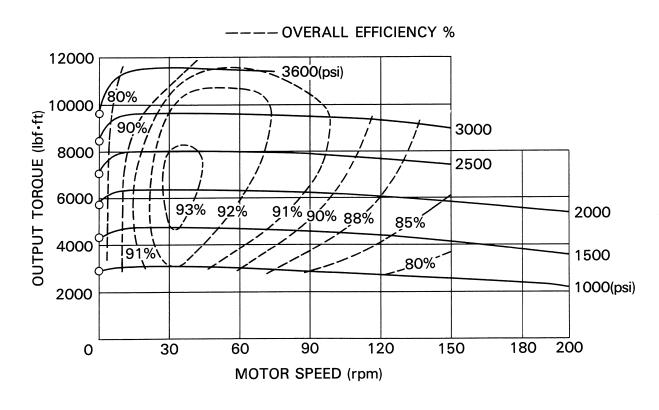

5. Applications with axial thrust loads should be referred to us.

Fig. 8-1

Eaton ME4100


Displacement : 249.97 in³/rev.
Rated Pressure : 3600 psi
Peak Pressure : 4700 psi
Rated Torque : 11928 lbf·ft
Rated Speed : 75 rpm
Max. Speed : 200 rpm
Max. Horse Power : 284 hp
Weight : 1147 lb

The graphs shown are mean values obtained from production units.

FLUID; SHELL TELLUS 56 (VISCOSITY 170 SUS at 122°F)

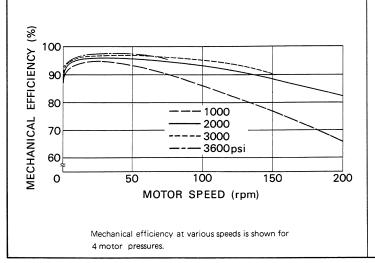
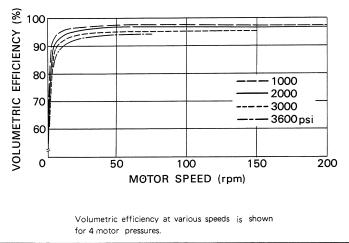
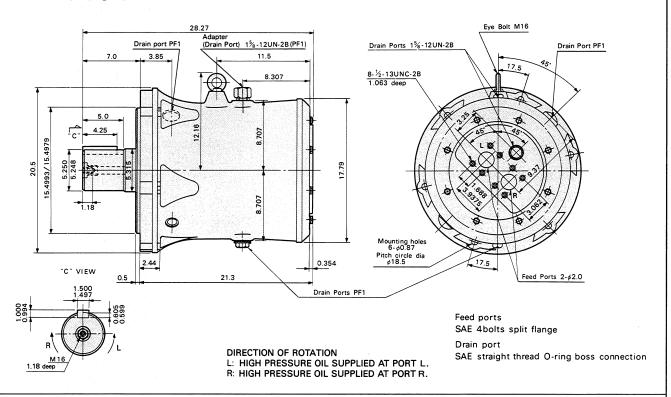
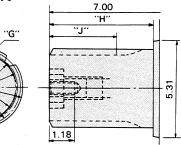
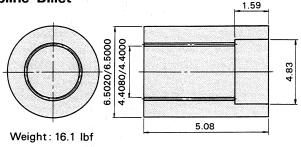




Fig. 3 Volumetric Efficiency



Nominal Dimensions

Optional Shaft Dimensions


From flange mount surface

Type of Spline: Involute: Flat root side fit: Pressure angle 30°: Pitch 5/10 Class 1 fit:To B.S.3550 or A.S.A.-B5-15.

No.of teeth	Pitch Dia. "A"	Base Dia. "B"	Tooth Thickness "C"	Major Dia. "D"	Form Dia "E"	Minor Dia. "F"	Fillet Radius "G"	"H"	"J"
23	4.6000		0.3123 0.3083		4.3908	4.3560 4.3310	0.030	5.00	3.45

Spline Billet

M16

Involute Spline (Flat root side fit, Class 1 fit) B.S.3550 or A.S.A-B5-15

Allowable Pressure for Spline Billet: 3600 psi

No.of Teeth:

23

Pitch:

Pressure Angle: 30°

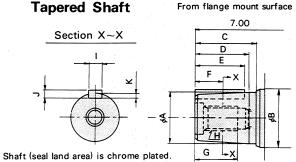
Pitch Dia:

4.6000

5/10

Major Dia:

4.8250/4.8000


Minor Dia:

4.4080/4.4000

Space Width:

0.3182/0.3166

Tapered Shaft

Α	В	С	D	E	F	G	Н	1	J	к
5.118 5.117	5.315	5.000	4.331	3.622	2.165	2.500	М36	1.4173 1.4149	0.7874 0.7823	0.4843 0.4724

Taper: 1.0/10 10

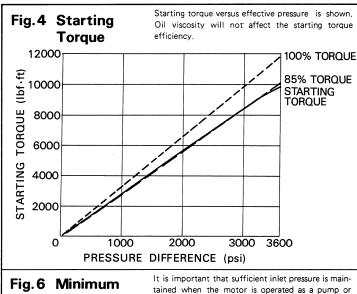
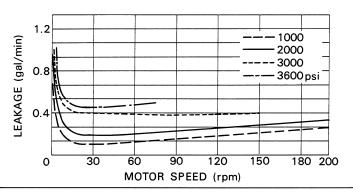



Fig. 5 Case Leakage Case leakage (from motor drain ports) relative to various speeds is shown for 4 motor pressures.

Boost Pressure

when the load overruns the motor, to prevent cavitation.

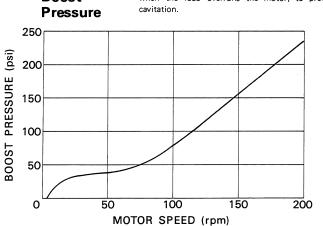


Fig. 7 Pressure

Pressure necessary to run motor without load is shown for various speeds.

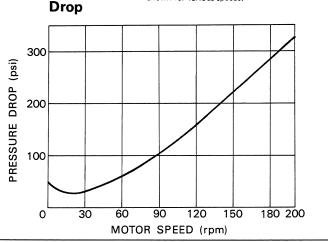
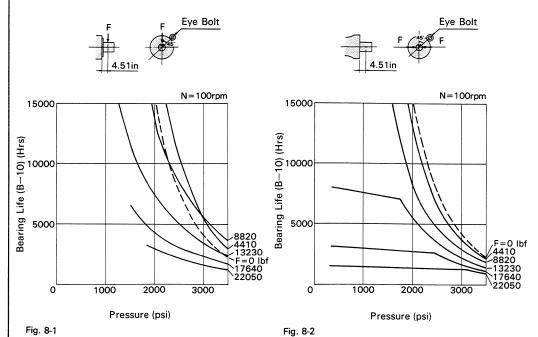



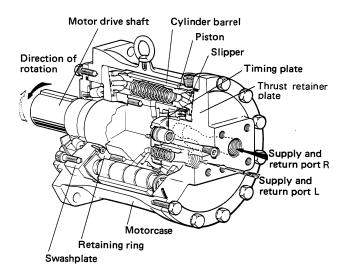
Fig. 8 Bearing Life and Motor Shaft Radial Load

Note

- 1. If motors are operated on the proper conditions, the operational life is determined by the Bearing 1 ife
- 2. In order to maintain the maximum bearing life, when a radial load is imposed on the output shaft the motor should be installed as illustrated in Fig. 8;
 - For a uni-directional application, motor should be installed so that side load acts as shown in figure 8.1.
 - For a bi-directional application, involving a radial load for each rotation, then the motor should be installed so that side loads act as shown in figure 8.2.
- 3. The graphs shown are the bearing life (B-10 Life) at 100 rpm shaft speed for various pressures and radial loads.
 - When the shaft speed differs from 100 rpm, the bearing life can be obtained by the formula

B-10 Life = (Bearing Life obtainable in the graph at 100 rpm)

100 Actual Shaft Speed


In case where the side load acts at a different position to the mid point of the shaft projection please refer to us.

4. Maximum allowable radial load (load applied at the mid-point of shaft projection)

Working Pressure (psi)	2000	3000	3600
Permissible Radial Load (lbf)	22000	19800	19200

5. Applications with axial thrust loads should be referred to us.

OPERATION

Fluid entering the supply port is directed via internal passages and timing plate to the center of the cylinder bores. Fluid pressure forces the pistons apart causing the slippers to slide on the angled faces of the swash plates and rotate the barrel and shaft assembly. After work, fluid is exhausted through the timing plate and internal passages to the return port.

APPLICATION

Motor Casing Drain Pipe

The motor casing drain pipe to the reservoir must be adequately sized so that the casing pressure cannot exceed 45 psi (3 bar), even under cold start conditions. As a guide the pipe diameter must be at least equal to the drain port diameter. Where case pressure exceeds 45 psi (3 bar), or where a long pipe run cannot be avoided, please consult us.

Installation Attitude

ME series motors are flange mounted and can be positioned in any attitude provided that one of the drain connections in the unit case is at the highest point of the unit — THIS IS MOST IMPORTANT.

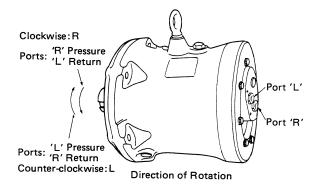
The dotted line is for ME100, ME150, ME175, ME300, ME350, ME600A, ME750A, ME850, ME1300A and ME3100.

Direct Drives

Whenever possible flexible couplings should be used to relieve the motor shaft of any radial or axial loads.

When splined drives are contemplated it is important that the P.C. dia. of the female spline is concentric to the pilot diameter preferably within 0.002 in T.I.R.

Indirect Drives


Gear, chain and belt drives may be used provided the motor is mounted as shown in the diagram below and the resultant radial load on the shaft is within the permissible limits shown in the relevant section for each model. Loads are assumed to be applied at the center of the shaft extension. Please consult our representative for conditions outside the above recommendations and in cases where axial loading of the shaft is contemplated.

Shaft rotation view from shaft end	Pulley drive	Gear drive
Reversible	Pulley Both positions are acceptable Eye bolt	Gear Gear Both positions are acceptable
Counter-clockwise		
Clockwise	Eye bolt	Eye bolt

The dotted circles are the eyebolt locations for ME1900, ME2600 and ME4100.

Direction of Rotation

Motor rotation is reversible by changing over the fluid supply to the motor main ports. The relationship between the direction of rotation and the fluid flow is shown below. The direction of the shaft rotation for ME750A and ME850 is in reverse to the diagram below.

Hydraulic Fluid

(a) Mineral-based fluid

It is important to select a good quality fluid for use in the system. The fluid selected must be suitable for use both under cold-start conditions and at maximum operating temperature. Temperature range $-4\,^{\circ}\text{F}$ to $+158\,^{\circ}\text{F}$. Shell Tellus 56 and equivalent fluids are approved for use with Dowmax motors. These fluids have the following characteristics:

Optimum viscosity range from 98 SUS to 460 SUS at normal working temperatures

Resistance to foaming, oxidation and emulsification Anti-rust and anti-corrosion properties

(b) Fire-resistant fluid

Phosphate-ester fluids need special seals. Because of low viscosity index a cooler may be needed to ensure constant temperature operation. Speed ratings are affected and advice from our Technical Sales Department should be sought.

Water-glycol fluid has only limited approval and our Technical Sales Department should be consulted whenever its use is considered.

Filtration

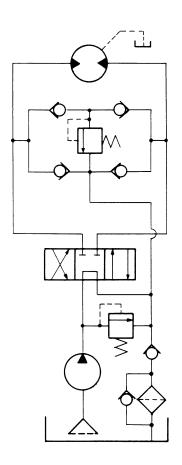
A filter of 10 microns standard, preferably with an element condition indicator, must be fitted in the return line from the motor (open circuit), or downstream of the boost pump (closed circuit).

Typical Circuit

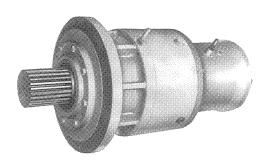
Typical open loop and closed loop circuits are shown below.

Fluid Reservoir

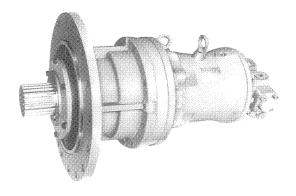
The fluid reservoir must be of adequate size with easy access for cleaning.


A strainer of 100 mesh construction (0.15 mm or 0.006 in. gap) must be fitted to the pump suction line inside the reservoir. It must be of sufficient size to prevent cavitation and to allow for partial obstruction after a period of service. The pump suction line should draw fluid from a point several inches above the tank bottom to avoid sludge deposits, and the return line should be submerged to limit frothing of the fluid

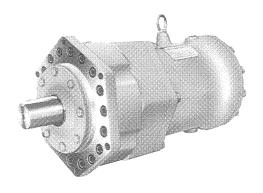
The suction and return connections should be positioned as far apart as possible so that fluid circulation is promoted within the tank to assist convection cooling. A baffle plate fitted between the two connections will help to do this. Displacement volume must be allowed for by providing adequate air space and breathing. For this purpose an oil filler/breather must be fitted to the filling orifice in the top surface of the tank. This should comprise a fine mesh strainer for the filling orifice and an air filter to prevent the entry of dust particles through the breather.


Overrun Protection

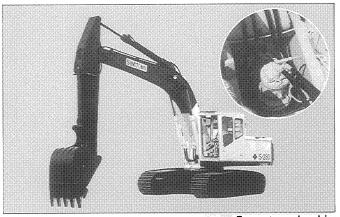
Cavitation can take place if the motor is allowed to rotate under the influence of inertia forces or external loads after the fluid supply has been cut off. On these applications it is recommended that a closed circuit is used. Where this is not possible, motor cavitation can be prevented by using counterbalance or brake valves, anti-cavitation check valves, or by boosting the motor inlet. Boost pressure varies with motor speed and is shown in the Boost Pressure curves.



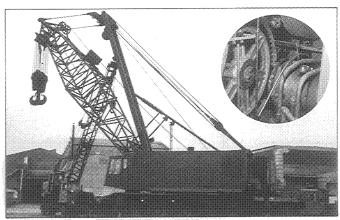
Closed Loop Circuit


Geared Motor

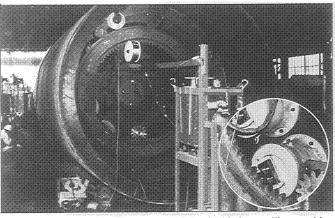
Counterbalance Valve

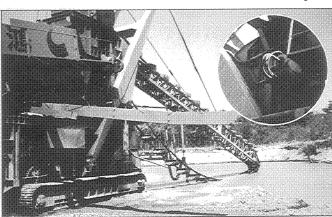


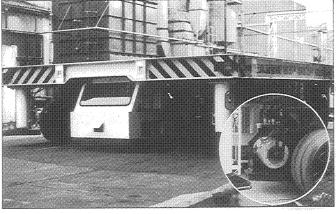
Two Speed Motor

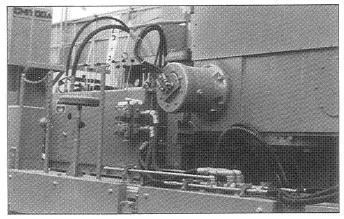


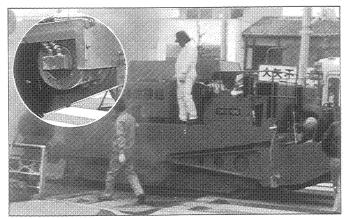
Motor with Brake

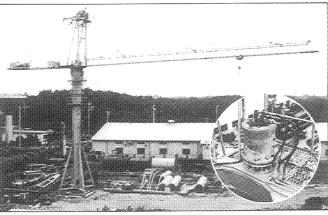

These options are available from Eaton Hydraulics Division.
Contact your Eaton representative for more information.


Excavator swing drive


Truck crane swing drive


Shielded tunnelling machine


Gravel gathering machine conveyor drive


Heavy load carrier

Pile driving machine

Road planer

Tower crane swing drive

Eaton 14615 Lone Oak Road Eden Prairie, MN 55344 USA Tel: 952 937-9800 Fax: 952 974-7722 www.hydraulics.eaton.com Eaton 20 Rosamond Road Footscray Victoria 3011 Australia Tel: (61) 3 9319 8222 Fax: (61) 3 9318 5714 Eaton Dr.-Reckeweg-Str. 1 D-76532 Baden-Baden Germany Tel: (49) 7221 682-0 Fax: (49) 7221 682-788

